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Abstract 
Was investigated the process of the displacement of oil 
with water in the horizontally located two-dimensional layer, 

incompressible liquid in non-deformable porous media. Within 

of exploitative wells. Meanwhile, as additional conditions are set 
downhole pressure in injection wells. For the numerical solution 

As a result original problem comes down to two independent 
problems which are solved sequentially in each layer of time: the 

of saturation of displacing phase. For the solution of the forward 

parallelization of received differential problems. In the base of the 
offered numerical method were carried out experimental results 
for model tasks. For parallelization of computing, processes was 
applied Open MP technology.

Introduction 
Water flooding – injection of the water to the media by individual ascension wells 

is one of the leading technologies for the exploitation of oil reserves. By this method, 
it is possible to solve two interrelated problems: sustaining the pressure of the media, 
which helps to not to fall the debits of extractive wells, at the same time provides the 
displacing of the oil from the media to extractive wells. It should be mentioned that 
the role of the water in the process of displacement is challenging. In the one hand 
as displacing agent, water lets to increase the coefficient of oil production, in the 
other hand by rushing to wells and watering them, decreases the effectivity of 
exploitation of the oil field. By this reason for control of the processes of oil 
displacement from the media by the water, for projecting of development systems 
and during exploitation of oil fields was widely applied mathematical modeling 
methods. By application of modeling methods, it is possible to explore different 
development methods, to evaluate the effectivity the various methods to influence 
media, to predict the behavior of the oil field. 

For modeling of the oil displacement process from the media by water is used 
following equations system, which includes continuity equations of filtration of oil and 
water flow: 
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Introduction 
Water flooding – injection of the water to the media by individual ascension wells 

is one of the leading technologies for the exploitation of oil reserves. By this method, 
it is possible to solve two interrelated problems: sustaining the pressure of the media, 
which helps to not to fall the debits of extractive wells, at the same time provides the 
displacing of the oil from the media to extractive wells. It should be mentioned that 
the role of the water in the process of displacement is challenging. In the one hand 
as displacing agent, water lets to increase the coefficient of oil production, in the 
other hand by rushing to wells and watering them, decreases the effectivity of 
exploitation of the oil field. By this reason for control of the processes of oil 
displacement from the media by the water, for projecting of development systems 
and during exploitation of oil fields was widely applied mathematical modeling 
methods. By application of modeling methods, it is possible to explore different 
development methods, to evaluate the effectivity the various methods to influence 
media, to predict the behavior of the oil field. 

For modeling of the oil displacement process from the media by water is used 
following equations system, which includes continuity equations of filtration of oil and 
water flow: 

,     (1) 

 
,     (2) 

equation of the liquid flow (generalized rule of Darcy) 

 ,      (3) 

   
 (4) 

 law of performance of the porous media and liquids 
,        (5) 

where – is the saturation of displacing phase (water), – is the saturation of 
displaced phase (oil), , – are speeds of filtration of displaced and displacing 
phases, , –pressures in water and oil phases, – relative phase 
porosities of the water and oil, –viscosity of the water and oil, – the 
coefficient of absolute porosity, – coefficient of porosity, , –densities of the 
water and oil, - acceleration of gravity. 

For the completeness of the equations system (1)-(5) is used the following equality 
, + ,     (6) 

where is the capillary pressure. 
For the single-valued definition of the pressure fields and saturation of the phases 

from the equations system (1) – (6) are complemented by initial and marginal 
conditions, which describes the initial state of the media and interrelation of the 
media with the environment. Marginal conditions are set regarding pressure or liquid 
discharge to wells and in the external border of the media. Usually, wells are 
modeled by using point sources (sewage), which are defined by the Dirac function, 
except for single-well system in the cylindrical coordinates [3]. It is important to note 
that, given approach resulted from the smallness of the well radius in comparison 
with the measures of the oil field. However, for the marginal conditions in the wells, it 
is essential to note the main circumstance. Traditionally, in the ground from where 
water – the displaced phase flows to the field (displacement wells, feed contour, 
gallery) either charge of the displaced phase or pressure is considered to be given. 
However, conditions given in exploitation wells generally are not satisfied. The 
working mode of exploitation wells, i.e., their flow and downhole pressure are set in 
dependency from the conditions of the system "media – well", also in the result of 
interrelation of wells. By this reason, it is practically impossible to describe conditions 
in exploitation wells precisely. In this regard, for practice in the development of oil 
fields modeling of the processes for the displacement of oil from the media by water 
on the base of information only from injection wells is very important. 

 
1. Statement of the problem and solution method 
Let’s assume that, is investigated non-deformable oil-producing media with the 

constant power H, which horizontally located in a rectangular field
. Roof and sole, and the lateral external border of the media 

is considered to be impenetrable for liquids. In the media, there are L injected and as 
many exploitation wells. In the time moment through injected wells, water is 
pumped into the media under pressure, which exceeds the pressure of the media. It 
is assumed that during the displacement process in media is generated insulated 
double-phased flow of incompressible and mutually immiscible liquids – oil and 
water, subject to generalized law of Darcy. Because sizes of the wells are much less 
size of media, it is possible to neglect sizes of the wells by representing them as 
point flows (sources) with the capacities equal to the charges of real wells. By 
representing wells as point flows (sources) which are described by Dirac function, 
the mathematical model of the double-phased process in media excluding 
gravitational forces can be provided as  

, 

, 

where –is Dirac function, , –are flows and coordinates of 
exploitation wells, , – are flows and coordinates of injected 
wells. 

By neglecting capillary pressure, i.e., assuming  and denoting , 
, , the least system can be presented 

by the following type  

, (7) 

,         (8)  

. 
Let’s assume that, in the initial time moment  distribution of the pressure, and 

distribution of water saturation in the media are presented, i.e., for the system (7), (8) 
are defined following initial conditions 

,      (9) 
.     (10) 

Since the external border of the media is considered impenetrable, for the system 
(7), (8) will be defined following marginal conditions in external media: 

, .         (11) 

Flows of all injected wells  are also considered to be given. However, 
related to the impossibility of regularization of oil collection in exploitation wells 
according to pre-determined program, their flows , are considered to be 
unknown and should be defined with the functions and . It is clear 
that for the correct problem statement, it is necessary to set additional conditions. 
Let’s assume that, as well as the flows of the wells at the same moment, is given 
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Introduction 
Water flooding – injection of the water to the media by individual ascension wells 

is one of the leading technologies for the exploitation of oil reserves. By this method, 
it is possible to solve two interrelated problems: sustaining the pressure of the media, 
which helps to not to fall the debits of extractive wells, at the same time provides the 
displacing of the oil from the media to extractive wells. It should be mentioned that 
the role of the water in the process of displacement is challenging. In the one hand 
as displacing agent, water lets to increase the coefficient of oil production, in the 
other hand by rushing to wells and watering them, decreases the effectivity of 
exploitation of the oil field. By this reason for control of the processes of oil 
displacement from the media by the water, for projecting of development systems 
and during exploitation of oil fields was widely applied mathematical modeling 
methods. By application of modeling methods, it is possible to explore different 
development methods, to evaluate the effectivity the various methods to influence 
media, to predict the behavior of the oil field. 

For modeling of the oil displacement process from the media by water is used 
following equations system, which includes continuity equations of filtration of oil and 
water flow: 

,     (1) 

 
,     (2) 

equation of the liquid flow (generalized rule of Darcy) 

 ,      (3) 

   
 (4) 

 law of performance of the porous media and liquids 
,        (5) 

where – is the saturation of displacing phase (water), – is the saturation of 
displaced phase (oil), , – are speeds of filtration of displaced and displacing 
phases, , –pressures in water and oil phases, – relative phase 
porosities of the water and oil, –viscosity of the water and oil, – the 
coefficient of absolute porosity, – coefficient of porosity, , –densities of the 
water and oil, - acceleration of gravity. 

For the completeness of the equations system (1)-(5) is used the following equality 
, + ,     (6) 

where is the capillary pressure. 
For the single-valued definition of the pressure fields and saturation of the phases 

from the equations system (1) – (6) are complemented by initial and marginal 
conditions, which describes the initial state of the media and interrelation of the 
media with the environment. Marginal conditions are set regarding pressure or liquid 
discharge to wells and in the external border of the media. Usually, wells are 
modeled by using point sources (sewage), which are defined by the Dirac function, 
except for single-well system in the cylindrical coordinates [3]. It is important to note 
that, given approach resulted from the smallness of the well radius in comparison 
with the measures of the oil field. However, for the marginal conditions in the wells, it 
is essential to note the main circumstance. Traditionally, in the ground from where 
water – the displaced phase flows to the field (displacement wells, feed contour, 
gallery) either charge of the displaced phase or pressure is considered to be given. 
However, conditions given in exploitation wells generally are not satisfied. The 
working mode of exploitation wells, i.e., their flow and downhole pressure are set in 
dependency from the conditions of the system "media – well", also in the result of 
interrelation of wells. By this reason, it is practically impossible to describe conditions 
in exploitation wells precisely. In this regard, for practice in the development of oil 
fields modeling of the processes for the displacement of oil from the media by water 
on the base of information only from injection wells is very important. 

 
1. Statement of the problem and solution method 
Let’s assume that, is investigated non-deformable oil-producing media with the 

constant power H, which horizontally located in a rectangular field
. Roof and sole, and the lateral external border of the media 

is considered to be impenetrable for liquids. In the media, there are L injected and as 
many exploitation wells. In the time moment through injected wells, water is 
pumped into the media under pressure, which exceeds the pressure of the media. It 
is assumed that during the displacement process in media is generated insulated 
double-phased flow of incompressible and mutually immiscible liquids – oil and 
water, subject to generalized law of Darcy. Because sizes of the wells are much less 
size of media, it is possible to neglect sizes of the wells by representing them as 
point flows (sources) with the capacities equal to the charges of real wells. By 
representing wells as point flows (sources) which are described by Dirac function, 
the mathematical model of the double-phased process in media excluding 
gravitational forces can be provided as  

, 

, 

where –is Dirac function, , –are flows and coordinates of 
exploitation wells, , – are flows and coordinates of injected 
wells. 

By neglecting capillary pressure, i.e., assuming  and denoting , 
, , the least system can be presented 

by the following type  

, (7) 

,         (8)  

. 
Let’s assume that, in the initial time moment  distribution of the pressure, and 

distribution of water saturation in the media are presented, i.e., for the system (7), (8) 
are defined following initial conditions 

,      (9) 
.     (10) 

Since the external border of the media is considered impenetrable, for the system 
(7), (8) will be defined following marginal conditions in external media: 

, .         (11) 

Flows of all injected wells  are also considered to be given. However, 
related to the impossibility of regularization of oil collection in exploitation wells 
according to pre-determined program, their flows , are considered to be 
unknown and should be defined with the functions and . It is clear 
that for the correct problem statement, it is necessary to set additional conditions. 
Let’s assume that, as well as the flows of the wells at the same moment, is given 
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Introduction 
Water flooding – injection of the water to the media by individual ascension wells 

is one of the leading technologies for the exploitation of oil reserves. By this method, 
it is possible to solve two interrelated problems: sustaining the pressure of the media, 
which helps to not to fall the debits of extractive wells, at the same time provides the 
displacing of the oil from the media to extractive wells. It should be mentioned that 
the role of the water in the process of displacement is challenging. In the one hand 
as displacing agent, water lets to increase the coefficient of oil production, in the 
other hand by rushing to wells and watering them, decreases the effectivity of 
exploitation of the oil field. By this reason for control of the processes of oil 
displacement from the media by the water, for projecting of development systems 
and during exploitation of oil fields was widely applied mathematical modeling 
methods. By application of modeling methods, it is possible to explore different 
development methods, to evaluate the effectivity the various methods to influence 
media, to predict the behavior of the oil field. 

For modeling of the oil displacement process from the media by water is used 
following equations system, which includes continuity equations of filtration of oil and 
water flow: 

,     (1) 

 
,     (2) 

equation of the liquid flow (generalized rule of Darcy) 

 ,      (3) 

   
 (4) 

 law of performance of the porous media and liquids 
,        (5) 

where – is the saturation of displacing phase (water), – is the saturation of 
displaced phase (oil), , – are speeds of filtration of displaced and displacing 
phases, , –pressures in water and oil phases, – relative phase 
porosities of the water and oil, –viscosity of the water and oil, – the 
coefficient of absolute porosity, – coefficient of porosity, , –densities of the 
water and oil, - acceleration of gravity. 

For the completeness of the equations system (1)-(5) is used the following equality 
, + ,     (6) 

where is the capillary pressure. 
For the single-valued definition of the pressure fields and saturation of the phases 

from the equations system (1) – (6) are complemented by initial and marginal 
conditions, which describes the initial state of the media and interrelation of the 
media with the environment. Marginal conditions are set regarding pressure or liquid 
discharge to wells and in the external border of the media. Usually, wells are 
modeled by using point sources (sewage), which are defined by the Dirac function, 
except for single-well system in the cylindrical coordinates [3]. It is important to note 
that, given approach resulted from the smallness of the well radius in comparison 
with the measures of the oil field. However, for the marginal conditions in the wells, it 
is essential to note the main circumstance. Traditionally, in the ground from where 
water – the displaced phase flows to the field (displacement wells, feed contour, 
gallery) either charge of the displaced phase or pressure is considered to be given. 
However, conditions given in exploitation wells generally are not satisfied. The 
working mode of exploitation wells, i.e., their flow and downhole pressure are set in 
dependency from the conditions of the system "media – well", also in the result of 
interrelation of wells. By this reason, it is practically impossible to describe conditions 
in exploitation wells precisely. In this regard, for practice in the development of oil 
fields modeling of the processes for the displacement of oil from the media by water 
on the base of information only from injection wells is very important. 

 
1. Statement of the problem and solution method 
Let’s assume that, is investigated non-deformable oil-producing media with the 

constant power H, which horizontally located in a rectangular field
. Roof and sole, and the lateral external border of the media 

is considered to be impenetrable for liquids. In the media, there are L injected and as 
many exploitation wells. In the time moment through injected wells, water is 
pumped into the media under pressure, which exceeds the pressure of the media. It 
is assumed that during the displacement process in media is generated insulated 
double-phased flow of incompressible and mutually immiscible liquids – oil and 
water, subject to generalized law of Darcy. Because sizes of the wells are much less 
size of media, it is possible to neglect sizes of the wells by representing them as 
point flows (sources) with the capacities equal to the charges of real wells. By 
representing wells as point flows (sources) which are described by Dirac function, 
the mathematical model of the double-phased process in media excluding 
gravitational forces can be provided as  

, 

, 

where –is Dirac function, , –are flows and coordinates of 
exploitation wells, , – are flows and coordinates of injected 
wells. 

By neglecting capillary pressure, i.e., assuming  and denoting , 
, , the least system can be presented 

by the following type  

, (7) 

,         (8)  

. 
Let’s assume that, in the initial time moment  distribution of the pressure, and 

distribution of water saturation in the media are presented, i.e., for the system (7), (8) 
are defined following initial conditions 

,      (9) 
.     (10) 

Since the external border of the media is considered impenetrable, for the system 
(7), (8) will be defined following marginal conditions in external media: 

, .         (11) 

Flows of all injected wells  are also considered to be given. However, 
related to the impossibility of regularization of oil collection in exploitation wells 
according to pre-determined program, their flows , are considered to be 
unknown and should be defined with the functions and . It is clear 
that for the correct problem statement, it is necessary to set additional conditions. 
Let’s assume that, as well as the flows of the wells at the same moment, is given 
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change rule of downhole pressure over time in all injected wells. Then as additional 
conditions, we will have  

, .     (12) 
By this way, the problem is concluded as a definition of the functions

, and , which satisfies equations system (7), (8) and conditions 
(9)-(12). The objective relates to the class of inverse problems, which are related to 
the reconstruction of the right parts of the differential equations with the partial 
derivatives [4 – 5]. Statement issues and numerical methods for the solution of 
inverse problems for the reconstruction of the right parts of differential equations with 
the partial derivatives are investigated in [4-10].  

For the solution of the problem (7)-(12) firstly let’s include continuous difference 
scheme in the interval  for the variable t  

 

with the step . The derivative  in the equation (8) we can 

discretize with the difference “back” when  

 

also, obtained differential difference task for each fixed value , 
fragmenting it off into two consequentially solvable subproblems, we can write as 

,          (13) 

 

, ,   (14) 
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The first subproblem (13) - (15) is an inverse problem for the definition of the 

function and variables , . Nevertheless, the function is 
considered to be known. The second subproblem is the solution of the equation (16) 
regarding the unknown function . 

Now let's assume that the solution of the subproblem (13)-(15) for each fixed 
value , can be represented as [7-11]: 
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As we can see problems for definition of the functions , ,  
(20), (21) and (22), (23) are independent from the variables ,  and can be 
parallelized. Let’s assume that, problem (20), (21) and problem (22), (23) are solved 
for each value , i.e. functions  и ,  are defined. Then 
setting expression (19) in the additional conditions (15) we obtain following linear 
algebraic system of equations regarding to unknown variables , : 
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It is clear that, by the solution of the equations system (24) and definition of
, it is possible to obtain the function  with the formula (19). Then by 

setting in the equation (16), it is possible to find . 
In this way computing algorithm for solution of difference-differential problem (7)-

(12) for definition of ,  и ,  for each fixed value 
established by parallel solution of forward difference-differential 

problems (14), (15) and (16), (17) regarding to the functions , , 
, definition of ,  from the algebraic linear equations system (18), 

using expression (13) for and solution of the equation (10) for the function 
. 

By this way, the proposed parallel numerical method enables to define 
sequentially flows of exploitative wells, distribution of the pressure in the media, and 
distribution of the saturation of displaced phase. 
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change rule of downhole pressure over time in all injected wells. Then as additional 
conditions, we will have  

, .     (12) 
By this way, the problem is concluded as a definition of the functions

, and , which satisfies equations system (7), (8) and conditions 
(9)-(12). The objective relates to the class of inverse problems, which are related to 
the reconstruction of the right parts of the differential equations with the partial 
derivatives [4 – 5]. Statement issues and numerical methods for the solution of 
inverse problems for the reconstruction of the right parts of differential equations with 
the partial derivatives are investigated in [4-10].  

For the solution of the problem (7)-(12) firstly let’s include continuous difference 
scheme in the interval  for the variable t  

 

with the step . The derivative  in the equation (8) we can 

discretize with the difference “back” when  

 

also, obtained differential difference task for each fixed value , 
fragmenting it off into two consequentially solvable subproblems, we can write as 
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The first subproblem (13) - (15) is an inverse problem for the definition of the 

function and variables , . Nevertheless, the function is 
considered to be known. The second subproblem is the solution of the equation (16) 
regarding the unknown function . 

Now let's assume that the solution of the subproblem (13)-(15) for each fixed 
value , can be represented as [7-11]: 

    (19) 

where , – are unknown functions. By setting equality (19) in 
(13), (14) we will have 
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From the last expressions, it is possible to get boundary problems regarding
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As we can see problems for definition of the functions , ,  
(20), (21) and (22), (23) are independent from the variables ,  and can be 
parallelized. Let’s assume that, problem (20), (21) and problem (22), (23) are solved 
for each value , i.e. functions  и ,  are defined. Then 
setting expression (19) in the additional conditions (15) we obtain following linear 
algebraic system of equations regarding to unknown variables , : 

,     (24) 

It is clear that, by the solution of the equations system (24) and definition of
, it is possible to obtain the function  with the formula (19). Then by 

setting in the equation (16), it is possible to find . 
In this way computing algorithm for solution of difference-differential problem (7)-

(12) for definition of ,  и ,  for each fixed value 
established by parallel solution of forward difference-differential 

problems (14), (15) and (16), (17) regarding to the functions , , 
, definition of ,  from the algebraic linear equations system (18), 

using expression (13) for and solution of the equation (10) for the function 
. 

By this way, the proposed parallel numerical method enables to define 
sequentially flows of exploitative wells, distribution of the pressure in the media, and 
distribution of the saturation of displaced phase. 

 
2. Experimental results 
For clarifying effectivity of the application of the proposed computational algorithm 

were provided numerical experiments for model problems. The calculation was 
carried out in space-time difference network with the steps ℎ = 0.1, 𝜏𝜏 = 0.01.	For 
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change rule of downhole pressure over time in all injected wells. Then as additional 
conditions, we will have  

, .     (12) 
By this way, the problem is concluded as a definition of the functions

, and , which satisfies equations system (7), (8) and conditions 
(9)-(12). The objective relates to the class of inverse problems, which are related to 
the reconstruction of the right parts of the differential equations with the partial 
derivatives [4 – 5]. Statement issues and numerical methods for the solution of 
inverse problems for the reconstruction of the right parts of differential equations with 
the partial derivatives are investigated in [4-10].  

For the solution of the problem (7)-(12) firstly let’s include continuous difference 
scheme in the interval  for the variable t  

 

with the step . The derivative  in the equation (8) we can 

discretize with the difference “back” when  

 

also, obtained differential difference task for each fixed value , 
fragmenting it off into two consequentially solvable subproblems, we can write as 
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The first subproblem (13) - (15) is an inverse problem for the definition of the 

function and variables , . Nevertheless, the function is 
considered to be known. The second subproblem is the solution of the equation (16) 
regarding the unknown function . 

Now let's assume that the solution of the subproblem (13)-(15) for each fixed 
value , can be represented as [7-11]: 
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where , – are unknown functions. By setting equality (19) in 
(13), (14) we will have 
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From the last expressions, it is possible to get boundary problems regarding
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,   (20) 

, .    (21) 
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As we can see problems for definition of the functions , ,  
(20), (21) and (22), (23) are independent from the variables ,  and can be 
parallelized. Let’s assume that, problem (20), (21) and problem (22), (23) are solved 
for each value , i.e. functions  и ,  are defined. Then 
setting expression (19) in the additional conditions (15) we obtain following linear 
algebraic system of equations regarding to unknown variables , : 

,     (24) 

It is clear that, by the solution of the equations system (24) and definition of
, it is possible to obtain the function  with the formula (19). Then by 

setting in the equation (16), it is possible to find . 
In this way computing algorithm for solution of difference-differential problem (7)-

(12) for definition of ,  и ,  for each fixed value 
established by parallel solution of forward difference-differential 

problems (14), (15) and (16), (17) regarding to the functions , , 
, definition of ,  from the algebraic linear equations system (18), 

using expression (13) for and solution of the equation (10) for the function 
. 

By this way, the proposed parallel numerical method enables to define 
sequentially flows of exploitative wells, distribution of the pressure in the media, and 
distribution of the saturation of displaced phase. 

 
2. Experimental results 
For clarifying effectivity of the application of the proposed computational algorithm 

were provided numerical experiments for model problems. The calculation was 
carried out in space-time difference network with the steps ℎ = 0.1, 𝜏𝜏 = 0.01.	For 
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Table 1. Differences between running times of sequential and parallel algorithms

N Length of the step, h
Running time for 

sequential algorithm 
(seconds)

Running time for paral-
lel algorithm (seconds)

1 0.2 232.51 98.37
2 0.1 557.37 236.47
3 0.05 1980.370 805.81

Numerical results of the calculations show that volume of the saturated phase on 
given time is equal to the produced oil in the exploitation wells on this time.
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