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Abstract
The automatic identification of Gastrointestinal (GI) tract diseases 
in endoscopy images has been associated with the domain 
of medical imaging and computer vision. Its classification has 
various challenges, including color, low contrast, lesion shape, 
and complex background. A Deep features-based method for 
the classification of gastrointestinal disease is implemented 
in this article. The method suggested involves four significant 
steps: preprocessing, extraction of handcrafted, and deep 
Convolutional neural network features (Deep CNN), selection 
of solid features, fusion, and classification. 3D-Median filtering 
in the preprocessing stage increases the lesion contrast. The 
second stage extracts the features centered on the shape. The 
extracted features are of three types: HOG features, ResNet50, 
and Xception. Principal Component Analysis (PCA) is chosen to 
select extracted features, combined by concatenating them in a 
single array. A support vector system eventually categorizes fused 
features into multiple classes. The Kvasir dataset is used for the 
proposed model. The SVM has outstanding efficiency reached 
96.6 percent, showing the proposed system's robustness.

Keyword: GI Tract Diseases, WCE, Feature Extraction, Deep 
Features, Feature Selection, Classification

Azerbaijan Journal of High Performance Computing, Vol 6, Issue 1, 2023, pp. 49-76
https://doi.org/10.32010/26166127.2023.6.1.49.76

1. Introduction
Nowadays, gastrointestinal (GI) Tract disease detection and classification are 

dynamic research areas in medical imaging  (Feng, R., et al., 2020, April). Multiple 
diseases may occur in the entire GI Tract, including Ulcers, Polyps, Esophagitis, and 
Bleeding (Wickstrøm, K., Kampffmeyer, M., & Jenssen, R., 2018, September; Høiland, 
T. N., 2017). Polyps, bleeding, and ulcers are widespread diseases around the globe 
(Chen, T., et al., 2020). In the human digestive system, a polyp is a cluster of cells 
formed inside the colon or intestine, possibly leading to colon cancer (Poorneshwaran, 
J. M., Kumar, S. S., Ram, K., Joseph, J., & Sivaprakasam, M., 2019, July; Khan, M. A., 
Sharif, M., Akram, T., Yasmin, M., & Nayak, R. S., 2019). Colon cancer is divided into 
two main categories, neoplastic and non-neoplastic. Adenoma and Serrated are types 
of neoplastic polyps with a significant risk of colorectal cancer. Hyperplastic polyps 
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and inflammatory polyps are non-neoplastic and are not much cancerous (Tjalma, 
J. J., et al., 2016). In mature adults, the seventh prevalent disease is the esophagus. 
The intensified diagnosis and screening of esophagus disorders may increase the 
probability of recovery between 19 and 80 percent. Consequently, the rate of human 
death will be reduced if disorders of the GI tract can be identified and treated earlier.

To detect different types of GI Tract diseases, as shown in Figure 1, healthcare 
practitioners use the endoscopy process. Traditionally, the stomach, esophagus, and 
large intestine were inspected by push endoscopy. It was impossible to examine the 
small intestine for bleeding, ulcers, and polyps (Yu, L., Yuen, P. C., & Lai, J., 2012, 
November). For the first time, as an alternative, Wireless Capsule Endoscopy (WCE) 
was introduced to inspect the patient’s GI Tract, especially the small intestine, directly 
because it was impossible to reach the small intestine through push endoscopy. 
Wireless capsule endoscopy (WCE) is a painless and non-invasive way to inspect a 
complete digestive system (Sharif, M., et al., 2021). The capsule is swallowed by the 
patient, who moves throughout the GI Tract and takes photos of over fifty thousand 
(Majid, A., et al., 2020). The captured frames are forwarded to a receiver tied with a 
belt on the waist of the patient. The camera's battery drops dead within 8 hours, and 
the capsule is conceded in the patient's feces and is wasted. Transmitted images 
are then fetched from the belt and passed through different algorithms for diagnosis. 
In 2000, WCE was initiated and approved by Food and Drug Administration (FDA) in 
2002. It is an essential procedure for slight bowel penetration. (Berens, J., Mackiewicz, 
M., & Bell, D., 2005, April). 

Currently, the primary analysis and testing techniques are colonoscopy, 
gastroscopy, and computed tomography (CT) (Hwang, S., Oh, J., Cox, J., Tang, S. 
J., & Tibbals, H. F., 2006, March; Saba, T., Mohamed, A. S., El-Affendi, M., Amin, J., 
& Sharif, M., 2020) tests. All these are costly, time-sensitive, and inconvenient for the 
person (de Lange, T., Larsen, S., & Aabakken, L., 2005). A certain amount of patient 
distress has also been expected due to endoscopic procedures. They all involve 
intensive tools and medical experts, making screening entire populations difficult. 
There are several methods to screen the GI tract, but the most effective method for 
early identification is population-wide examinations (El-Matary, W., 2008). However, 
there are restrictions on the sensitivity, specificity, and cost of the current processes. 
The suggested colon testing technique is endoscopy, but it is a challenging operation 
that needs plenty of actions from medical staff. Besides, polyps are often missed 
because of the physician's tiredness or because an endoscope may be unable to 
reach a particular portion of the colon (Sharif, M., et al., 2021; Tajbakhsh, N., Gurudu, 
S. R., & Liang, J., 2013). Precise identification of GI tract diseases is complicated due 
to the complex features of endoscopic images. The contextual nature of polyp images, 
such as structure, scale, and correlation with the adjacent ones, differ, and physicians 
may locate anomalies in all situations with considerable reliability.

In comparison, endoscopic video generates more than 55000 frames per patient 
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test. The filmed bizarre scenes only consume 5 percent of the total scenarios obtained, 
so it is stressful for health professionals to view an abnormal scenario manually for 
the entire set of images (Yuan, Y., Wang, J., Li, B., & Meng, M. Q. H., 2015; Khan, M. 
A., et al., 2020). It is helpful for physicians to assist them by automatically reviewing 
videos during manual examinations and giving live feedback. One way to achieve this 
might be through computer vision. Computer-Aided Diagnosis (CAD) and Automated 
Computer Diagnosis (ACD) have emerged more recently, both of which could make 
the process more automated (Mughal, B., Sharif, M., & Muhammad, N., 2017; de 
Souza-Filho, E. M., & de Amorim Fernandes, F., 2021; Mughal, B., Muhammad, N., & 
Sharif, M., 2019). CAD seeks to assist physicians during examinations by getting both 
the doctor and a disease search detection scheme, generating a synergistic

Impact where the machine can provide a second opinion (Li, P., et al., 2015). ACD 
tries to optimize the method so that a doctor is unnecessary during the initial processing. 
This could allow patients to conduct their initial testing, placing less pressure on the 
healthcare system, which improves the scalability by reducing costs and enabling a 
more considerable proportion of the population to be screened.

Many of the CAD systems developed recently helped doctors in their clinics 
significantly. Most CAD detection and classification methods for GI diagnosis are 
based on supervised algorithms (Amin, J., Sharif, M., Yasmin, M., & Fernandes, 
S. L., 2018). Such CAD systems automatically diagnose GI diseases by extracting 
features from WCE images. Handcrafted characteristics, including shape and color, 
for treating abnormalities were extracted from different CAD systems (Ali, H., Yasmin, 
M., Sharif, M., & Rehmani, M. H., 2018; Khan, M. A., Javed, M. Y., Sharif, M., Saba, T., 
& Rehman, A., 2019, April). Recent profound learning developments perform well on 
classical features of many previously underperforming CAD systems. The high-level 
features of the fully connected neural network are calculated (Sharif, M. I., Khan, M. 
A., Alhussein, M., Aurangzeb, K., & Raza, M., 2021). Developing an automatic disease 
recognition CAD system is therefore essential in time. While several methods have 
been developed for detecting infections in the GI Tract, focusing on feature selection 
and optimization techniques (Shahzad, A., Raza, M., Shah, J. H., Sharif, M., & Nayak, 
R. S., 2022), using and optimizing features remain challenging. The new advancement 
of machine vision and analytical procedures influences the transition of Diagnostic 
imaging from specialist doctor's manual examination to the extensive use of integrated 
diagnostic systems (Saba, T., Sameh, A., Khan, F., Shad, S. A., & Sharif, M., 2019). 
It is essential to monitor objects within the human body. Surfaces and anomalies may 
have different shapes, forms, textures, patterns, and viewpoints. They may obscure 
particular objects or barriers. The principle aspect of the approach is to determine the 
identity of GI tract diseases preliminarily by quantifying global image patterns and, if 
verified, to locate them using fully Convolutional neural networks.

The GI tract disease classification in endoscopy images usually consists of four 
significant stages: preprocessing, extraction of the features, selection of solid features, 
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Fig. 1: Abnormalities in GI Tract having different sizes and locations (a) 
Esophagitis (b) Ulcerative-colitis (c) Polyps (d) Healthy images

fusion, and classifi cation (Amin, J., Sharif, M., Yasmin, M., Saba, T., Anjum, M. A., & 
Fernandes, S. L., 2019; Nida, N., et al., 2016; Khan, M. A., et al., 2020). Owing to many 
challenges, this is a complicated and time-consuming technique, and the primary one 
faces many regions that are not easily visible due to a comprehensive series of videos. 
The CAD programs can help physicians to overcome these problems. The anomalous 
area can be a different size and type, making identifi cation diffi cult. In particular, this 
area has signifi cant issues, such as a stable and robust selection of the appropriate 
data ( Umer, M. J., & Sharif, M. I., 2022), the spectrum of lesion texture, variance, color, 
form and scalability, and accuracy results.

A novel paradigm for classifying GI tract diseases is suggested to overcome these 
problems. The suggested technique consisted of four key steps: (a) preprocessing 
the image, (b) extracting features, (c) features selection (d) fusion and classifi cation. 
Below are the key contributions:
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(i) The image is scaled into a particular size during the preprocessing stage, and 
the 3D-median mask is used to enhance contrast to the lesion.

(ii) In the second phase, shape-based features (HOG) and deep features (Xception 
and ResNet50) are extracted to recognize high-level image endoscopy characteristics 
that focus on low-image features (color, shape, and texture indicators).

(iii) Principal component analysis (PCA) and Entropy reduce the selected features 
to provide greater precision following other approaches. The methodology of this study 
uses the core features to classify various types of images accurately. The reduced 
features are supplied to the high-value correlation coefficient to specify the stable and 
robust features.

(iv) The selected solid features and then fused by a sequential procedure and finally 
classified by MC-SVM.

The most critical task is to extract and select appropriate features. The emphasis of 
this paper is more on improving the features identified and reducing recognition time. 

The background concepts needed for understanding the paper be explained in 
section 2. In Section 3, the GI tract disease classification methodology is described. 
Section 4 provides the experiments and their performance with a detailed analysis. The 
paper ends in section 5 by summarizing the methods suggested.

2. Related Work
Classification (Redwan, S. M., Uddin, M. P., Ulhaq, A., & Sharif, M. I., 2022; Hasan, 

S. M., et al., 2022; Fayyaz, A. M., et al., 2023; Ramzan, M., Raza, M., Sharif, M. I., 
& Kadry, S., 2022) and segmentation (Li, J., & Wang, J. Z., 2003) of lesions based 
on extracted features have received much consideration in computer visualization 
and graphics for various purposes like medical imaging, classification of scenes, 
agriculture, and biometrics (Berens, J., Mackiewicz, M., & Bell, D., 2005, April). WCE 
is the current medical imaging technology that passes through the human body 
to visualize the entire GI Tract. However, large numbers of video frames make the 
scheme more complicated and make it harder to explore the diagnosis for physicians 
(Iddan, G., Meron, G., Glukhovsky, A., & Swain, P., 2000). This chapter summarizes 
and explores the previous polyp segmentation and features extraction techniques and 
the classification of GI tract diseases. Identifying and classifying three main types of 
GI diseases include ulcers, bleeding, and polyps (Amin, J., Sharif, M., Raza, M., & 
Yasmin, M., 2018). In terms of their characteristics, classification and identification 
were performed. Figure 2 demonstrates the overall graphical representation of the 
literature review.

Preprocessing of images requires enhancing local and global contrast between 
images in the data to enhance the image's visual properties. Based on its many 
applications, such as monitoring, biometrics, and medical, the preprocessing stage 
significantly impacts computer vision (Amin, J., Sharif, M., Rehman, A., Raza, M., & 
Mufti, M. R., 2018; Amin, J., Sharif, M., Raza, M., Saba, T., & Anjum, M. A., 2019; 
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Fig. 2:  Graphical Representation of the Literature Review

Nisa, M., et al., 2020). Such approaches as comparison, binary image equalization, 
and morphological techniques use basic image processing algorithms. Segmentation 
performs a signifi cant role in extracting the critical region. Segmentation means the 
image is divided by pixel information into several parts (Khan, M. A., et al., 2022; Khan, 
M. A., et al., 2020; Sharif, M., Amin, J., Raza, M., Yasmin, M., & Satapathy, S. C., 2020). 
It is used to detect the infectious disease in a particular image. Feature extraction 
is the essential step, which is further processed after preprocessing. High precision 
relies entirely on a good selection of features. The reduction of dimensional space 
is the same as feature extraction (Sharif, M., et al., 2020; Rashid, M., et al., 2019). 
Classifi cation is among the most common procedures in computer vision, pattern 
recognition, and image processing. It determines the feature space of unknown 
patterns. Classifi cation is generally divided into two main categories: supervised and 
unsupervised  (Amin, J., et al., 2020; Amin, J., et al., 2020; Yuan, Y., Li, B., & Meng, 
M. Q. H., 2015). For preprocessing, different fi lters, like the Gaussian fi lter, guided 
fi lter, Gaussian kernel., were used by Yuan et al. (2015), X. et al. (2016), Eskandari 
et al. (2012, December), and Zou et al. (2016, July) for bleeding images, hookworm, 
polyp images, and esophagus thus achieved the classifi cation accuracy of 95.75%, 
98.4%, 90.91%, and 95.52% respectively. Liaqat et al. (2018)  implemented a novel 
segmentation system for ulcers and bleeding images by separating HSV channels 
and extracting geometric features of the S channel, thus achieving 98.3% accuracy. 
Charfi  et al. (2018) suggested a new way focused on LBP and DWT for segmenting 
bleeding and polyp regions. This system achieved an accuracy of 97.0%. Another 
polyp region was defi ned by Sanchez-Gonzalez et al. (2019) using shape, color, and 
curve of margin. The effect is a polyp identifi cation score of 90.53 percent for polyp 
segmentation. Y. And I, Shin. Balasingham  et al. (2018) utilized a dictionary learning 
method that included a histogram of gradient and hue histogram to distinguish polyp 
presentation through a 95% classifi cation through SVM for regular versus polyp 
images. In (Sánchez-González, A., García-Zapirain, B., Sierra-Sosa, D., & Elmaghraby, 
A., 2018), the researchers used an edge detection system along with color and shapes 
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region for the polyps segmentation, thus attaining 90.53% accuracy. Wang et al. (2015) 
implemented Polyp-Alert, which used the previous visual cross-section and rules 
classifier. It was able to run on non-shelf machines and was used for colonoscopies. 
It could reach 95.7% accuracy, which means 4.3% false-positive. Mehshan et al. 
(2020) proposed a new polyp, ulcer, and bleeding detection system by fusing FCN 
and ResNet50. For classification purposes, Cubic Kernel MSVM attained an accuracy 
of 99.13%. The researchers proposed another technique using Med-Net (Nguyen, N. 
Q., Vo, D. M., & Lee, S. W., 2020) for in-depth features to detect polyps. The proposed 
system through Med-Net features showed 99.0% accuracy. In (Hajabdollahi, M., et al., 
2018), the authors provided a convenient and efficient method for the segmentation 
from WCE images of the bleeding region. The multi-perceptron method used HSI and 
LAB color transformations, resulting in enhanced results. For detecting polyps, the 
researchers proposed a two-stage technique (Akbari, M., et al., 2018, July). In the first 
stage, the image dataset was augmented through patch selection, while in the 2nd 
step; the processed images were passed through the FCN-8S deep network and thus 
showed 97.7% accuracy for detecting polyps. Another approach in (Yuan, Y., & Meng, 
M. Q. H., 2017) extracted deep features using SSAEIM for detecting polyps. Input 
images were passed through a deep network for feature selection, and at the end, 
the SVM classifier was used and obtained 98.0% accuracy. Souaidi M., et al. (2019)  
suggested an ulcer detection algorithm using Cr and Green components of YCbCr and 
RGB space, respectively. The tests obtained an average accuracy of 95.11 percent 
by the SVM classification. The authors suggested ResUNet++ (Jha, D., et al., 2019, 
December) and modern ResUNet architecture for colonoscopy image classification 
to build a fully automatic paradigm for pixel-specific polyp detection. Experimental 
investigations found that the proposed architecture provided strong effects on data 
sets that were publicly accessible. 

3. Proposed System
A significant, diverse, and dynamic study in computer visualization is the automated 

diagnosis of GI tract diseases in endoscopy images in medical imaging. The example 
of WCE image plays a vital role in detecting GI diseases, including bleeding, ulcer, and 
polyp. A classification method of infected areas for image processing is introduced 
in this chapter consisting of four main steps: i) preprocessing the image; ii) features 
extraction; iii) features selection; iv) reduction of features and classification. The 
brightness effects are first reduced with methods of preprocessing that generate an 
efficient image. The improved image is then used for the extraction of features. The 
optimal value characteristics are chosen from the original features extracted and fed 
to a multiclass support vector (MC- SVM) for classification, which gives different sets 
of WCE images, including esophagitis, ulcer, polyp, and healthy. Figure 3 illustrates 
the proposed method's detailed flow diagram that suggests that each step involves 
multiple phases.

Azerbaijan Journal of High Performance Computing, 6 (1), 2023
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Fig. 3:  Proposed framework of GI tract disease classifi cation

3.1. Image Preprocessing 
The preprocessing of images ensures that the quality of the reference image 

increases the object's optical value locally and globally. The preprocessing stage 
significantly affects computer vision, depending on its numerous uses, including 
tracking, medical imaging, and biometric identification. It poses many medical issues, 
such as luminosity variations, illumination characteristics, and the nature of the context. 
The critical goal for image processing applications is to eliminate harmful material and 
retrieve the most excellent features. Hence the suggested contrast enhancement 
approach has been applied to resolve these mentioned problems, which involves two 
phases: a) Redesign the image to a suitable size for extraction of features; b) 3D-
Median filtering. The image is initially resized to a resolution of 128×64. Since the GI 
tract images contain much chromatic aberration, a 3D-Median filter on the query image 
is performed to stabilize the image based on the same weights as the pixels joined. 
Owing to its nonlinearity, the 3D-Median filter best retains the edges. The image also 
blurs with a moderate pixel value. In the following steps, a 3D-Median filter is 
implemented. At first, the image is transformed from RGB pixel P(x,y) with three 
channels, shows a 3D median filter applied to a polyp image. Here is the concept of 
the median filter: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍) = ∑ ∑ [ℛ!][𝒞𝒞"]#
"$%

#
!$%     (1) 

Where	𝜄𝜄 ∈ 𝜏𝜏, 𝜁𝜁 ∈ 𝜍𝜍, and 𝜏𝜏, 𝑎𝑎𝑎𝑎𝑎𝑎	𝜍𝜍 indicate the rows and columns of the filter 
created.  The generated filter size is 3×3=9, executed on each mode separately as: 

𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛾𝛾(𝜒𝜒, 𝜓𝜓)]       (2) 
𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛿𝛿(𝜒𝜒, 𝜓𝜓)]       (3) 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛽𝛽(𝜒𝜒, 𝜓𝜓)]       (4) 

Where	𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) Is the red mask filter, 𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) is the green mask filter, and 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) is the blue mask filter. Moreover, 𝛾𝛾(𝜒𝜒, 𝜓𝜓), 𝛿𝛿(𝜒𝜒, 𝜓𝜓), and 𝛽𝛽(𝜒𝜒, 𝜓𝜓) signify the 
red, green, and blue channels comparatively determined.  

𝛾𝛾(𝜒𝜒, 𝜓𝜓) = *+,
-(/,1)

     (5) 

𝛿𝛿(𝜒𝜒, 𝜓𝜓) = 3*++4
-(/,1)

     (6) 

𝛽𝛽(𝜒𝜒, 𝜓𝜓) = 567+
-(/,1)

     (7) 
Afterward, the Convolution process is carried out with the mask filter and pixel 

values for every channel individually. As a result of 𝜏𝜏 = 3, 𝜍𝜍 = 3, and 𝜏𝜏% = 256, 𝜍𝜍% =
256, a null matrix 𝑍𝑍(𝜒𝜒, 𝜓𝜓)of size 256×256 is generated. A new matrix is produced by 
utilizing 𝜏𝜏, 𝜍𝜍, 𝜏𝜏%, and 𝜍𝜍%given as under: 

𝐹𝐹8(𝜒𝜒, 𝜓𝜓) = ∑ ∑ [𝑍𝑍!,"(𝜒𝜒, 𝜓𝜓) +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)]8!
"$%

9"
!$%        (8) 

Where	𝜄𝜄 ∈ 𝜏𝜏7,	𝜁𝜁 ∈ 𝜏𝜏8,𝜏𝜏7 = 3,	𝜍𝜍7 = 3,𝜏𝜏: = 𝜏𝜏7 + 𝜏𝜏% − 1, and𝜍𝜍; = 𝜍𝜍7 + 𝜍𝜍% − 1. The 𝜏𝜏7 
and 𝜍𝜍7 symbols signify the modified rows and column pixels, up to 256 times iterated. 
Finally, 𝐹𝐹8(𝜒𝜒, 𝜓𝜓) has been used, and for each channel, a 2D image is created, gradually 
coupled to each other, and a new enhanced image is obtained.  

Μ𝐹𝐹(𝜒𝜒,𝜓𝜓) = ∑ ∑ Ι!×"
;
"$%

:
!$%         (9) 

𝐹𝐹𝐹𝐹(𝜒𝜒, 𝜓𝜓) = ∑ Μ𝐹𝐹!! (𝜒𝜒, 𝜓𝜓)         (10) 
Where 𝐹𝐹𝐹𝐹(𝜒𝜒, ) shown in (a), while 4 (b), (c), and (d) are the images after 3D median 

filtering. 
 
3.2. Feature Extraction 
Extraction of features is the essential procedure in machine learning (Zafar, M., et 

al., 2023) and computer vision in monitoring systems, robotics, surgery, farming, and 
much more. Features are extracted for machine learning to develop a reformation of 
the input dataset, which preserves its most appropriate data. It would be hard to 
efficiently classify some classes if we used exclusively traditional features to distinguish 
medical images. Deep learning has been one of the most important areas of 
exploration in information science and computer applications in the last several years. 
Due to advancements in deep learning, several researchers also sought to use such a 
design framework to work with non-medical images. Various profound models to 
overcome image difficulties have been suggested. Classification of medical images is 
one of the main issues in the field of computer vision, and its purpose is to recognize 
medical images into multiple categories to assist healthcare professionals in the 
evaluation of disease or further examination. The critical goal of extracting and 
reducing features is to increase machine accuracy and running time. Therefore, the 
most critical features of selected diseases' classification were attempted to be 
extracted in this section. The feature extraction and deployment of the extracted 
features are given in detail below. 

 
3.3. Shape Features 
the histogram oriented gradients (HOG) correspondingly recognized as shape 

features are taken from the input frames, To discover the shapes, gradients, and 
orientation. Combining handcrafted feature vectors improved the modularity and 
efficiency of deep models. HOG properties are helpful for specific applications as they 
are essential in various scenarios, such as security, medical imaging, and agri-
business-economics. The attributes are interpreted in a row index, where N is the range 
of the HOG feature. The obtained elements encrypt information on the local shape in 
an image from regions. Therefore, HOG features are used for the classification of GI 
tract diseases. The distribution of gradients in the HOG feature collection clarifies the 
lesion regions. Therefore, 2D gradients 𝐷𝐷/ and 𝐷𝐷1are determined by the mask[−1, 0, 1] 
and	[−1, 0,1]=correspondingly. 

𝐷𝐷/ = >?#(/,1)
>/

      (11) 

𝐷𝐷1 = >?#(/,1)
>1

      (12) 
Then calculate the orientation and weights measures as follows: 

𝑊𝑊?(𝜒𝜒, 𝜓𝜓) = J𝐷𝐷/@ + 𝐷𝐷1@     (13) 

𝜃𝜃(𝜒𝜒, 𝜓𝜓) = 𝑡𝑡𝑡𝑡𝑡𝑡A% MB$
%

B&%
N      (14) 

Where 𝑊𝑊?(𝜒𝜒, 𝜓𝜓)are a weighing parameter, and lesion field orientation is indicated 
by 𝜃𝜃(𝜒𝜒, 𝜓𝜓). 

 
3.4. Deep Features using ResNet50 Model 
Since CNN has demonstrated practical perception training, extracting features by 

Convolutional mask filters and redirecting the parameters, we use ResNet50 neural 
network, pre-trained in the ImageNet dataset (Rezende, E., et al., 2017, December). 
For high-level image feature extraction, deep features are used. The characteristics 
are prepared by placing the last fully connected layer to obtain the vector dimension 
2048. Without much computing power, these feature vectors are easily obtained. As 
Resnet50 is able for most images to have an appropriate feature, we did not adjust it 
to the dataset and instead used the pre-trained weights of the ImageNet dataset. A 
comprehensive architecture of Resnet50, shown in Figure 6, demonstrates that the 
model includes one input layer, 4 Convolution blocks containing 3 Convolution layers, 
4 Batch-Normalization layers, and 3 ReLU layers. 12 Identity blocks containing 3 
Convolution layers, 3 Batch-Normalization, and 3 ReLU layers. In the pooling process, 
global average pooling is used. A fully-connected layer (FC) and softmax layer are 
used for classification purposes. The size of the image input layer is 224x224x3 as an 
RGB image. As an activation function, all hidden layers use the linear activation unit. 

CNN consists of a general model with multiple Convolution layers and provides a 
valuable way to select closely connected features automatically. It includes the input 
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3.1. Image Preprocessing 
The preprocessing of images ensures that the quality of the reference image 

increases the object's optical value locally and globally. The preprocessing stage 
significantly affects computer vision, depending on its numerous uses, including 
tracking, medical imaging, and biometric identification. It poses many medical issues, 
such as luminosity variations, illumination characteristics, and the nature of the context. 
The critical goal for image processing applications is to eliminate harmful material and 
retrieve the most excellent features. Hence the suggested contrast enhancement 
approach has been applied to resolve these mentioned problems, which involves two 
phases: a) Redesign the image to a suitable size for extraction of features; b) 3D-
Median filtering. The image is initially resized to a resolution of 128×64. Since the GI 
tract images contain much chromatic aberration, a 3D-Median filter on the query image 
is performed to stabilize the image based on the same weights as the pixels joined. 
Owing to its nonlinearity, the 3D-Median filter best retains the edges. The image also 
blurs with a moderate pixel value. In the following steps, a 3D-Median filter is 
implemented. At first, the image is transformed from RGB pixel P(x,y) with three 
channels, shows a 3D median filter applied to a polyp image. Here is the concept of 
the median filter: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍) = ∑ ∑ [ℛ!][𝒞𝒞"]#
"$%

#
!$%     (1) 

Where	𝜄𝜄 ∈ 𝜏𝜏, 𝜁𝜁 ∈ 𝜍𝜍, and 𝜏𝜏, 𝑎𝑎𝑎𝑎𝑎𝑎	𝜍𝜍 indicate the rows and columns of the filter 
created.  The generated filter size is 3×3=9, executed on each mode separately as: 

𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛾𝛾(𝜒𝜒, 𝜓𝜓)]       (2) 
𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛿𝛿(𝜒𝜒, 𝜓𝜓)]       (3) 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛽𝛽(𝜒𝜒, 𝜓𝜓)]       (4) 

Where	𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) Is the red mask filter, 𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) is the green mask filter, and 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) is the blue mask filter. Moreover, 𝛾𝛾(𝜒𝜒, 𝜓𝜓), 𝛿𝛿(𝜒𝜒, 𝜓𝜓), and 𝛽𝛽(𝜒𝜒, 𝜓𝜓) signify the 
red, green, and blue channels comparatively determined.  

𝛾𝛾(𝜒𝜒, 𝜓𝜓) = *+,
-(/,1)

     (5) 

𝛿𝛿(𝜒𝜒, 𝜓𝜓) = 3*++4
-(/,1)

     (6) 

𝛽𝛽(𝜒𝜒, 𝜓𝜓) = 567+
-(/,1)

     (7) 
Afterward, the Convolution process is carried out with the mask filter and pixel 

values for every channel individually. As a result of 𝜏𝜏 = 3, 𝜍𝜍 = 3, and 𝜏𝜏% = 256, 𝜍𝜍% =
256, a null matrix 𝑍𝑍(𝜒𝜒, 𝜓𝜓)of size 256×256 is generated. A new matrix is produced by 
utilizing 𝜏𝜏, 𝜍𝜍, 𝜏𝜏%, and 𝜍𝜍%given as under: 

𝐹𝐹8(𝜒𝜒, 𝜓𝜓) = ∑ ∑ [𝑍𝑍!,"(𝜒𝜒, 𝜓𝜓) +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)]8!
"$%

9"
!$%        (8) 

Where	𝜄𝜄 ∈ 𝜏𝜏7,	𝜁𝜁 ∈ 𝜏𝜏8,𝜏𝜏7 = 3,	𝜍𝜍7 = 3,𝜏𝜏: = 𝜏𝜏7 + 𝜏𝜏% − 1, and𝜍𝜍; = 𝜍𝜍7 + 𝜍𝜍% − 1. The 𝜏𝜏7 
and 𝜍𝜍7 symbols signify the modified rows and column pixels, up to 256 times iterated. 
Finally, 𝐹𝐹8(𝜒𝜒, 𝜓𝜓) has been used, and for each channel, a 2D image is created, gradually 
coupled to each other, and a new enhanced image is obtained.  

Μ𝐹𝐹(𝜒𝜒, 𝜓𝜓) = ∑ ∑ Ι!×"
;
"$%

:
!$%         (9) 

𝐹𝐹𝐹𝐹(𝜒𝜒, 𝜓𝜓) = ∑ Μ𝐹𝐹!! (𝜒𝜒, 𝜓𝜓)         (10) 
Where 𝐹𝐹𝐹𝐹(𝜒𝜒, ) shown in (a), while 4 (b), (c), and (d) are the images after 3D median 

filtering. 
 
3.2. Feature Extraction 
Extraction of features is the essential procedure in machine learning (Zafar, M., et 

al., 2023) and computer vision in monitoring systems, robotics, surgery, farming, and 
much more. Features are extracted for machine learning to develop a reformation of 
the input dataset, which preserves its most appropriate data. It would be hard to 
efficiently classify some classes if we used exclusively traditional features to distinguish 
medical images. Deep learning has been one of the most important areas of 
exploration in information science and computer applications in the last several years. 
Due to advancements in deep learning, several researchers also sought to use such a 
design framework to work with non-medical images. Various profound models to 
overcome image difficulties have been suggested. Classification of medical images is 
one of the main issues in the field of computer vision, and its purpose is to recognize 
medical images into multiple categories to assist healthcare professionals in the 
evaluation of disease or further examination. The critical goal of extracting and 
reducing features is to increase machine accuracy and running time. Therefore, the 
most critical features of selected diseases' classification were attempted to be 
extracted in this section. The feature extraction and deployment of the extracted 
features are given in detail below. 

 
3.3. Shape Features 
the histogram oriented gradients (HOG) correspondingly recognized as shape 

features are taken from the input frames, To discover the shapes, gradients, and 
orientation. Combining handcrafted feature vectors improved the modularity and 
efficiency of deep models. HOG properties are helpful for specific applications as they 
are essential in various scenarios, such as security, medical imaging, and agri-
business-economics. The attributes are interpreted in a row index, where N is the range 
of the HOG feature. The obtained elements encrypt information on the local shape in 
an image from regions. Therefore, HOG features are used for the classification of GI 
tract diseases. The distribution of gradients in the HOG feature collection clarifies the 
lesion regions. Therefore, 2D gradients 𝐷𝐷/ and 𝐷𝐷1are determined by the mask[−1, 0, 1] 
and	[−1, 0,1]=correspondingly. 

𝐷𝐷/ = >?#(/,1)
>/

      (11) 

𝐷𝐷1 = >?#(/,1)
>1

      (12) 
Then calculate the orientation and weights measures as follows: 

𝑊𝑊?(𝜒𝜒, 𝜓𝜓) = J𝐷𝐷/@ + 𝐷𝐷1@     (13) 

𝜃𝜃(𝜒𝜒, 𝜓𝜓) = 𝑡𝑡𝑡𝑡𝑡𝑡A% MB$
%

B&%
N      (14) 

Where 𝑊𝑊?(𝜒𝜒, 𝜓𝜓)are a weighing parameter, and lesion field orientation is indicated 
by 𝜃𝜃(𝜒𝜒, 𝜓𝜓). 

 
3.4. Deep Features using ResNet50 Model 
Since CNN has demonstrated practical perception training, extracting features by 

Convolutional mask filters and redirecting the parameters, we use ResNet50 neural 
network, pre-trained in the ImageNet dataset (Rezende, E., et al., 2017, December). 
For high-level image feature extraction, deep features are used. The characteristics 
are prepared by placing the last fully connected layer to obtain the vector dimension 
2048. Without much computing power, these feature vectors are easily obtained. As 
Resnet50 is able for most images to have an appropriate feature, we did not adjust it 
to the dataset and instead used the pre-trained weights of the ImageNet dataset. A 
comprehensive architecture of Resnet50, shown in Figure 6, demonstrates that the 
model includes one input layer, 4 Convolution blocks containing 3 Convolution layers, 
4 Batch-Normalization layers, and 3 ReLU layers. 12 Identity blocks containing 3 
Convolution layers, 3 Batch-Normalization, and 3 ReLU layers. In the pooling process, 
global average pooling is used. A fully-connected layer (FC) and softmax layer are 
used for classification purposes. The size of the image input layer is 224x224x3 as an 
RGB image. As an activation function, all hidden layers use the linear activation unit. 

CNN consists of a general model with multiple Convolution layers and provides a 
valuable way to select closely connected features automatically. It includes the input 

Fig. 4:  3D Median fi lter on polyp image (a) Original Image (b) 3D Median Filter with 3 
Neighboring Pixels (c) 3D Median Filter with 5 Neighboring Pixels (d) 3D Median Filter 

with7 Neighboring pixels
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3.1. Image Preprocessing 
The preprocessing of images ensures that the quality of the reference image 

increases the object's optical value locally and globally. The preprocessing stage 
significantly affects computer vision, depending on its numerous uses, including 
tracking, medical imaging, and biometric identification. It poses many medical issues, 
such as luminosity variations, illumination characteristics, and the nature of the context. 
The critical goal for image processing applications is to eliminate harmful material and 
retrieve the most excellent features. Hence the suggested contrast enhancement 
approach has been applied to resolve these mentioned problems, which involves two 
phases: a) Redesign the image to a suitable size for extraction of features; b) 3D-
Median filtering. The image is initially resized to a resolution of 128×64. Since the GI 
tract images contain much chromatic aberration, a 3D-Median filter on the query image 
is performed to stabilize the image based on the same weights as the pixels joined. 
Owing to its nonlinearity, the 3D-Median filter best retains the edges. The image also 
blurs with a moderate pixel value. In the following steps, a 3D-Median filter is 
implemented. At first, the image is transformed from RGB pixel P(x,y) with three 
channels, shows a 3D median filter applied to a polyp image. Here is the concept of 
the median filter: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍) = ∑ ∑ [ℛ!][𝒞𝒞"]#
"$%

#
!$%     (1) 

Where	𝜄𝜄 ∈ 𝜏𝜏, 𝜁𝜁 ∈ 𝜍𝜍, and 𝜏𝜏, 𝑎𝑎𝑎𝑎𝑎𝑎	𝜍𝜍 indicate the rows and columns of the filter 
created.  The generated filter size is 3×3=9, executed on each mode separately as: 

𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛾𝛾(𝜒𝜒, 𝜓𝜓)]       (2) 
𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛿𝛿(𝜒𝜒, 𝜓𝜓)]       (3) 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛽𝛽(𝜒𝜒, 𝜓𝜓)]       (4) 

Where	𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) Is the red mask filter, 𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) is the green mask filter, and 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) is the blue mask filter. Moreover, 𝛾𝛾(𝜒𝜒, 𝜓𝜓), 𝛿𝛿(𝜒𝜒, 𝜓𝜓), and 𝛽𝛽(𝜒𝜒, 𝜓𝜓) signify the 
red, green, and blue channels comparatively determined.  

𝛾𝛾(𝜒𝜒, 𝜓𝜓) = *+,
-(/,1)

     (5) 

𝛿𝛿(𝜒𝜒, 𝜓𝜓) = 3*++4
-(/,1)

     (6) 

𝛽𝛽(𝜒𝜒, 𝜓𝜓) = 567+
-(/,1)

     (7) 
Afterward, the Convolution process is carried out with the mask filter and pixel 

values for every channel individually. As a result of 𝜏𝜏 = 3, 𝜍𝜍 = 3, and 𝜏𝜏% = 256, 𝜍𝜍% =
256, a null matrix 𝑍𝑍(𝜒𝜒, 𝜓𝜓)of size 256×256 is generated. A new matrix is produced by 
utilizing 𝜏𝜏, 𝜍𝜍, 𝜏𝜏%, and 𝜍𝜍%given as under: 

𝐹𝐹8(𝜒𝜒, 𝜓𝜓) = ∑ ∑ [𝑍𝑍!,"(𝜒𝜒, 𝜓𝜓) +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)]8!
"$%

9"
!$%        (8) 

Where	𝜄𝜄 ∈ 𝜏𝜏7,	𝜁𝜁 ∈ 𝜏𝜏8,𝜏𝜏7 = 3,	𝜍𝜍7 = 3,𝜏𝜏: = 𝜏𝜏7 + 𝜏𝜏% − 1, and𝜍𝜍; = 𝜍𝜍7 + 𝜍𝜍% − 1. The 𝜏𝜏7 
and 𝜍𝜍7 symbols signify the modified rows and column pixels, up to 256 times iterated. 
Finally, 𝐹𝐹8(𝜒𝜒, 𝜓𝜓) has been used, and for each channel, a 2D image is created, gradually 
coupled to each other, and a new enhanced image is obtained.  

Μ𝐹𝐹(𝜒𝜒,𝜓𝜓) = ∑ ∑ Ι!×"
;
"$%

:
!$%         (9) 

𝐹𝐹𝐹𝐹(𝜒𝜒, 𝜓𝜓) = ∑ Μ𝐹𝐹!! (𝜒𝜒, 𝜓𝜓)         (10) 
Where 𝐹𝐹𝐹𝐹(𝜒𝜒, ) shown in (a), while 4 (b), (c), and (d) are the images after 3D median 

filtering. 
 
3.2. Feature Extraction 
Extraction of features is the essential procedure in machine learning (Zafar, M., et 

al., 2023) and computer vision in monitoring systems, robotics, surgery, farming, and 
much more. Features are extracted for machine learning to develop a reformation of 
the input dataset, which preserves its most appropriate data. It would be hard to 
efficiently classify some classes if we used exclusively traditional features to distinguish 
medical images. Deep learning has been one of the most important areas of 
exploration in information science and computer applications in the last several years. 
Due to advancements in deep learning, several researchers also sought to use such a 
design framework to work with non-medical images. Various profound models to 
overcome image difficulties have been suggested. Classification of medical images is 
one of the main issues in the field of computer vision, and its purpose is to recognize 
medical images into multiple categories to assist healthcare professionals in the 
evaluation of disease or further examination. The critical goal of extracting and 
reducing features is to increase machine accuracy and running time. Therefore, the 
most critical features of selected diseases' classification were attempted to be 
extracted in this section. The feature extraction and deployment of the extracted 
features are given in detail below. 

 
3.3. Shape Features 
the histogram oriented gradients (HOG) correspondingly recognized as shape 

features are taken from the input frames, To discover the shapes, gradients, and 
orientation. Combining handcrafted feature vectors improved the modularity and 
efficiency of deep models. HOG properties are helpful for specific applications as they 
are essential in various scenarios, such as security, medical imaging, and agri-
business-economics. The attributes are interpreted in a row index, where N is the range 
of the HOG feature. The obtained elements encrypt information on the local shape in 
an image from regions. Therefore, HOG features are used for the classification of GI 
tract diseases. The distribution of gradients in the HOG feature collection clarifies the 
lesion regions. Therefore, 2D gradients 𝐷𝐷/ and 𝐷𝐷1are determined by the mask[−1, 0, 1] 
and	[−1, 0,1]=correspondingly. 

𝐷𝐷/ = >?#(/,1)
>/

      (11) 

𝐷𝐷1 = >?#(/,1)
>1

      (12) 
Then calculate the orientation and weights measures as follows: 

𝑊𝑊?(𝜒𝜒, 𝜓𝜓) = J𝐷𝐷/@ + 𝐷𝐷1@     (13) 

𝜃𝜃(𝜒𝜒, 𝜓𝜓) = 𝑡𝑡𝑡𝑡𝑡𝑡A% MB$
%

B&%
N      (14) 

Where 𝑊𝑊?(𝜒𝜒, 𝜓𝜓)are a weighing parameter, and lesion field orientation is indicated 
by 𝜃𝜃(𝜒𝜒, 𝜓𝜓). 

 
3.4. Deep Features using ResNet50 Model 
Since CNN has demonstrated practical perception training, extracting features by 

Convolutional mask filters and redirecting the parameters, we use ResNet50 neural 
network, pre-trained in the ImageNet dataset (Rezende, E., et al., 2017, December). 
For high-level image feature extraction, deep features are used. The characteristics 
are prepared by placing the last fully connected layer to obtain the vector dimension 
2048. Without much computing power, these feature vectors are easily obtained. As 
Resnet50 is able for most images to have an appropriate feature, we did not adjust it 
to the dataset and instead used the pre-trained weights of the ImageNet dataset. A 
comprehensive architecture of Resnet50, shown in Figure 6, demonstrates that the 
model includes one input layer, 4 Convolution blocks containing 3 Convolution layers, 
4 Batch-Normalization layers, and 3 ReLU layers. 12 Identity blocks containing 3 
Convolution layers, 3 Batch-Normalization, and 3 ReLU layers. In the pooling process, 
global average pooling is used. A fully-connected layer (FC) and softmax layer are 
used for classification purposes. The size of the image input layer is 224x224x3 as an 
RGB image. As an activation function, all hidden layers use the linear activation unit. 

CNN consists of a general model with multiple Convolution layers and provides a 
valuable way to select closely connected features automatically. It includes the input 
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3.1. Image Preprocessing 
The preprocessing of images ensures that the quality of the reference image 

increases the object's optical value locally and globally. The preprocessing stage 
significantly affects computer vision, depending on its numerous uses, including 
tracking, medical imaging, and biometric identification. It poses many medical issues, 
such as luminosity variations, illumination characteristics, and the nature of the context. 
The critical goal for image processing applications is to eliminate harmful material and 
retrieve the most excellent features. Hence the suggested contrast enhancement 
approach has been applied to resolve these mentioned problems, which involves two 
phases: a) Redesign the image to a suitable size for extraction of features; b) 3D-
Median filtering. The image is initially resized to a resolution of 128×64. Since the GI 
tract images contain much chromatic aberration, a 3D-Median filter on the query image 
is performed to stabilize the image based on the same weights as the pixels joined. 
Owing to its nonlinearity, the 3D-Median filter best retains the edges. The image also 
blurs with a moderate pixel value. In the following steps, a 3D-Median filter is 
implemented. At first, the image is transformed from RGB pixel P(x,y) with three 
channels, shows a 3D median filter applied to a polyp image. Here is the concept of 
the median filter: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍) = ∑ ∑ [ℛ!][𝒞𝒞"]#
"$%

#
!$%     (1) 

Where	𝜄𝜄 ∈ 𝜏𝜏, 𝜁𝜁 ∈ 𝜍𝜍, and 𝜏𝜏, 𝑎𝑎𝑎𝑎𝑎𝑎	𝜍𝜍 indicate the rows and columns of the filter 
created.  The generated filter size is 3×3=9, executed on each mode separately as: 

𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛾𝛾(𝜒𝜒, 𝜓𝜓)]       (2) 
𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛿𝛿(𝜒𝜒, 𝜓𝜓)]       (3) 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)[𝛽𝛽(𝜒𝜒, 𝜓𝜓)]       (4) 

Where	𝛾𝛾&'()(𝜒𝜒, 𝜓𝜓) Is the red mask filter, 𝛿𝛿&'()(𝜒𝜒, 𝜓𝜓) is the green mask filter, and 
𝛽𝛽&'()(𝜒𝜒, 𝜓𝜓) is the blue mask filter. Moreover, 𝛾𝛾(𝜒𝜒, 𝜓𝜓), 𝛿𝛿(𝜒𝜒, 𝜓𝜓), and 𝛽𝛽(𝜒𝜒, 𝜓𝜓) signify the 
red, green, and blue channels comparatively determined.  

𝛾𝛾(𝜒𝜒, 𝜓𝜓) = *+,
-(/,1)

     (5) 

𝛿𝛿(𝜒𝜒, 𝜓𝜓) = 3*++4
-(/,1)

     (6) 

𝛽𝛽(𝜒𝜒, 𝜓𝜓) = 567+
-(/,1)

     (7) 
Afterward, the Convolution process is carried out with the mask filter and pixel 

values for every channel individually. As a result of 𝜏𝜏 = 3, 𝜍𝜍 = 3, and 𝜏𝜏% = 256, 𝜍𝜍% =
256, a null matrix 𝑍𝑍(𝜒𝜒, 𝜓𝜓)of size 256×256 is generated. A new matrix is produced by 
utilizing 𝜏𝜏, 𝜍𝜍, 𝜏𝜏%, and 𝜍𝜍%given as under: 

𝐹𝐹8(𝜒𝜒, 𝜓𝜓) = ∑ ∑ [𝑍𝑍!,"(𝜒𝜒, 𝜓𝜓) +𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜍𝜍)]8!
"$%

9"
!$%        (8) 

Where	𝜄𝜄 ∈ 𝜏𝜏7,	𝜁𝜁 ∈ 𝜏𝜏8,𝜏𝜏7 = 3,	𝜍𝜍7 = 3,𝜏𝜏: = 𝜏𝜏7 + 𝜏𝜏% − 1, and𝜍𝜍; = 𝜍𝜍7 + 𝜍𝜍% − 1. The 𝜏𝜏7 
and 𝜍𝜍7 symbols signify the modified rows and column pixels, up to 256 times iterated. 
Finally, 𝐹𝐹8(𝜒𝜒, 𝜓𝜓) has been used, and for each channel, a 2D image is created, gradually 
coupled to each other, and a new enhanced image is obtained.  

Μ𝐹𝐹(𝜒𝜒,𝜓𝜓) = ∑ ∑ Ι!×"
;
"$%

:
!$%         (9) 

𝐹𝐹𝐹𝐹(𝜒𝜒, 𝜓𝜓) = ∑ Μ𝐹𝐹!! (𝜒𝜒, 𝜓𝜓)         (10) 
Where 𝐹𝐹𝐹𝐹(𝜒𝜒, ) shown in (a), while 4 (b), (c), and (d) are the images after 3D median 

filtering. 
 
3.2. Feature Extraction 
Extraction of features is the essential procedure in machine learning (Zafar, M., et 

al., 2023) and computer vision in monitoring systems, robotics, surgery, farming, and 
much more. Features are extracted for machine learning to develop a reformation of 
the input dataset, which preserves its most appropriate data. It would be hard to 
efficiently classify some classes if we used exclusively traditional features to distinguish 
medical images. Deep learning has been one of the most important areas of 
exploration in information science and computer applications in the last several years. 
Due to advancements in deep learning, several researchers also sought to use such a 
design framework to work with non-medical images. Various profound models to 
overcome image difficulties have been suggested. Classification of medical images is 
one of the main issues in the field of computer vision, and its purpose is to recognize 
medical images into multiple categories to assist healthcare professionals in the 
evaluation of disease or further examination. The critical goal of extracting and 
reducing features is to increase machine accuracy and running time. Therefore, the 
most critical features of selected diseases' classification were attempted to be 
extracted in this section. The feature extraction and deployment of the extracted 
features are given in detail below. 

 
3.3. Shape Features 
the histogram oriented gradients (HOG) correspondingly recognized as shape 

features are taken from the input frames, To discover the shapes, gradients, and 
orientation. Combining handcrafted feature vectors improved the modularity and 
efficiency of deep models. HOG properties are helpful for specific applications as they 
are essential in various scenarios, such as security, medical imaging, and agri-
business-economics. The attributes are interpreted in a row index, where N is the range 
of the HOG feature. The obtained elements encrypt information on the local shape in 
an image from regions. Therefore, HOG features are used for the classification of GI 
tract diseases. The distribution of gradients in the HOG feature collection clarifies the 
lesion regions. Therefore, 2D gradients 𝐷𝐷/ and 𝐷𝐷1are determined by the mask[−1, 0, 1] 
and	[−1, 0,1]=correspondingly. 

𝐷𝐷/ = >?#(/,1)
>/

      (11) 

𝐷𝐷1 = >?#(/,1)
>1

      (12) 
Then calculate the orientation and weights measures as follows: 

𝑊𝑊?(𝜒𝜒, 𝜓𝜓) = J𝐷𝐷/@ + 𝐷𝐷1@     (13) 

𝜃𝜃(𝜒𝜒, 𝜓𝜓) = 𝑡𝑡𝑡𝑡𝑡𝑡A% MB$
%

B&%
N      (14) 

Where 𝑊𝑊?(𝜒𝜒, 𝜓𝜓)are a weighing parameter, and lesion field orientation is indicated 
by 𝜃𝜃(𝜒𝜒, 𝜓𝜓). 

 
3.4. Deep Features using ResNet50 Model 
Since CNN has demonstrated practical perception training, extracting features by 

Convolutional mask filters and redirecting the parameters, we use ResNet50 neural 
network, pre-trained in the ImageNet dataset (Rezende, E., et al., 2017, December). 
For high-level image feature extraction, deep features are used. The characteristics 
are prepared by placing the last fully connected layer to obtain the vector dimension 
2048. Without much computing power, these feature vectors are easily obtained. As 
Resnet50 is able for most images to have an appropriate feature, we did not adjust it 
to the dataset and instead used the pre-trained weights of the ImageNet dataset. A 
comprehensive architecture of Resnet50, shown in Figure 6, demonstrates that the 
model includes one input layer, 4 Convolution blocks containing 3 Convolution layers, 
4 Batch-Normalization layers, and 3 ReLU layers. 12 Identity blocks containing 3 
Convolution layers, 3 Batch-Normalization, and 3 ReLU layers. In the pooling process, 
global average pooling is used. A fully-connected layer (FC) and softmax layer are 
used for classification purposes. The size of the image input layer is 224x224x3 as an 
RGB image. As an activation function, all hidden layers use the linear activation unit. 

CNN consists of a general model with multiple Convolution layers and provides a 
valuable way to select closely connected features automatically. It includes the input 
of H×W to the matrix in 3 dimensions. Kernel K is associated with the Convolutional 
layer h×w×3, while the Convolutional layer threshold is t. There are specified principal 
formulas for Convolutional layers as 

Χ; = Χ × Κ = ∑ (𝜒𝜒! + 𝜅𝜅!) + 𝜏𝜏#
!$%     (15) 

ℊ; = 	 ℊADE@×"
B

+ 1	      (16) 

Κ; = 		 FAGE@	×"
B

+ 1      (17) 
Where Κ denotes the kernel size, 𝐷𝐷 denotes the number of Convolutions, and 𝜏𝜏 is a 

threshold value. 
The initialization layer of ReLU is then carried out as follows: 

   Υ = max	(0, Χ)            (18) 
This equation shows that all negative values are transformed into zero after applying 

the function. The term pooling layer is another layer used to condense the number of 
features derived after the previous layers. Three different types of layers are used 
primarily as min, average, and max pooling. The strength of pooling is that the most 
relevant features are collected.  

Also, the formula is defined mathematically as follows: 
ρIJK	$:'L∱ (	.		,			.		, . )     (19) 
ρIMN$:O4∱ (	.		,			.		, . )      (20) 
ρ'P3 = 	 %

;
∑∱ (	.		,			.		, . )    (21) 

 Where ρIJK	 indicates the features of max-pooling layers, minimum pooling 
features are defined by ρIMN , and average pooling features by ρJQR The final layers 
of the CNN model, also known as fully connected layers, are described by the 
formulation below. 

ℒ!; = 𝑋𝑋 ×𝑊𝑊 +𝐷𝐷                                                     (22) 
ℒS7T = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿!;)                                                    (23) 

The FC layer is defined as follows from these generalized equations: 
ℒUS7T = 𝑋𝑋                                                           (24) 

	ℒ!!; = ℒ!A%S7T ×𝑊𝑊 +𝐷𝐷!                                                 (25) 
ℒ!S7T = Ϝ!(ℒ!!;)                                                    (26) 

Where	𝜄𝜄	is the number of layers implied, and Ϝ indicates the activation function. 
Residual (ResNets) networks are highly complex networks where blocks of the 

Convolution layer can be eliminated using shortcut links to other layers. The simple 
blocks referred to as 'Bottleneck' blocks are constructed. ResNet50 has 177 layers and 
50 fully Convolutional strips divided into 18 segments, except the first and last modules 
being linear residual links. Down-sampling is carried out directly by the Convolution 
layer with a 2-step normalization and is carried out immediately after any Convolutions 
and before ReLU activation. An identity Shortcut is used when the input layers have 
the exact dimensions as the output layer. Once the dimension rises, the projection 
shortcut is used for 1-1 Convolution. Both situations are carried out with a stride two if 
the shortcuts move across two-size maps. The network accomplishes a fully connected 
softmax layer (FC).  

 
3.5. Deep Features using XCeption Model 
Xception is an enhancement of the Inception architecture, introduced by François 

Chollet (Kaiser, L., Gomez, A. N., & Chollet, F., 2017). This model is a continuous stack 
of layers of residual links. The thoroughly segregated process focuses on reducing 
memory and computational cost deserves. Xception has 170 layers and 36 fully 
Convolutional strips divided into 14 segments, except the first and last modules being 
linear residual links. Therefore, it allows the description and alteration of the 
architecture. Down-sampling is carried out directly by the Convolution layer with a 2-
step normalization immediately after any Convolutions and before ReLU activation. The 
independent activation function in Xception distinguishes the analysis of channel and 
spatial features. A comprehensive architecture of Xception is shown in Figure 7. A fully-
connected layer (FC) and softmax layer are used for classification purposes. The size 
of the image input layer is 299x299x3 as an RGB image. As an activation function, all 
hidden layers use the linear activation unit. 

 
3.6. Features Selection and Fusion 
The selection of the features shortens the feature vector and arranges the best 

features for the best classification results. Various tests check the elimination of feature 
vector functions. It re-assigns the chosen characteristics of a feature matrix from the 
most common features. After extracting shape-based features and in-depth features 
using different models, PCA is executed on the feature matrix because it is an 
unsupervised technique that ignores the class labels to obtain the extracted features' 
outcomes. Then the average score is measured by defining a selection threshold for 
higher scores characteristics. The threshold is chosen accordingly: 

𝒮𝒮(𝑇𝑇ℎ𝑟𝑟) = f
𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)								𝑖𝑖𝑖𝑖		𝑓𝑓𝑓𝑓(𝜄𝜄) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑓𝑓(−1)										𝑖𝑖𝑖𝑖	𝑓𝑓𝑓𝑓(𝜄𝜄) < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (27) 

The function 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)indicates the feasible selected features, where the index is 
more significant than their mean, and the features not selected are denoted by 𝑓𝑓𝑓𝑓(−1). 
The correlation is then determined between selected 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)features and high-
correlation features. 

𝜌𝜌o𝑓𝑓𝑓𝑓(𝜄𝜄)p = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = VSP(!,")
W!W"

       (28) 
𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = 𝐸𝐸[(𝜄𝜄 − 𝜇𝜇𝜇𝜇)(𝜁𝜁 − 𝜇𝜇𝜇𝜇)]       (29) 

Where the mean of rows and columns vector is 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇, and 𝜎𝜎 denotes the default 
standard deviation. Fusion is an essential step in computer vision in which various 
features are merged in a string to produce the final classified feature vector. This phase 
is primarily motivated to collect all of the information from multiple descriptors in one 
vector that could be useful for the minimal error rate. The extracted elements above 
have been fused using a serial process, and a final vector fused using dimension 
N×560 has been obtained. Finally, the fused feature vector is fed to the classifier to 
classify the disease. One versus-one multiclass SVM was used for the chosen features.  
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of H×W to the matrix in 3 dimensions. Kernel K is associated with the Convolutional 
layer h×w×3, while the Convolutional layer threshold is t. There are specified principal 
formulas for Convolutional layers as

Χ; = Χ × Κ = ∑ (𝜒𝜒! + 𝜅𝜅!) + 𝜏𝜏#
!$% (15)

ℊ; =
ℊADE@×"

B
+ 1 (16)

Κ; =
FAGE@ ×"

B
+ 1 (17)

Where Κ denotes the kernel size, 𝐷𝐷 denotes the number of Convolutions, and 𝜏𝜏 is a 
threshold value.

The initialization layer of ReLU is then carried out as follows:
Υ = max (0, Χ)         (18)

This equation shows that all negative values are transformed into zero after applying 
the function. The term pooling layer is another layer used to condense the number of 
features derived after the previous layers. Three different types of layers are used 
primarily as min, average, and max pooling. The strength of pooling is that the most 
relevant features are collected. 

Also, the formula is defined mathematically as follows:
ρIJK $:'L∱ ( . , . , . ) (19)
ρIMN$:O4∱ ( . , . , . ) (20)
ρ'P3 = %

;
∑∱ ( . , . , . ) (21)

Where ρIJK indicates the features of max-pooling layers, minimum pooling 
features are defined by ρIMN , and average pooling features by ρJQR The final layers 
of the CNN model, also known as fully connected layers, are described by the 
formulation below.

ℒ!; = 𝑋𝑋 ×𝑊𝑊 +𝐷𝐷                                                     (22)
ℒS7T = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿!;)                                                    (23)

The FC layer is defined as follows from these generalized equations:
ℒUS7T = 𝑋𝑋                                                          (24)

ℒ!!; = ℒ!A%S7T ×𝑊𝑊 +𝐷𝐷!                                                 (25)
ℒ!S7T = Ϝ!(ℒ!!;)                                                    (26)

Where 𝜄𝜄 is the number of layers implied, and Ϝ indicates the activation function.
Residual (ResNets) networks are highly complex networks where blocks of the 

Convolution layer can be eliminated using shortcut links to other layers. The simple 
blocks referred to as 'Bottleneck' blocks are constructed. ResNet50 has 177 layers and 
50 fully Convolutional strips divided into 18 segments, except the first and last modules 
being linear residual links. Down-sampling is carried out directly by the Convolution 
layer with a 2-step normalization and is carried out immediately after any Convolutions 
and before ReLU activation. An identity Shortcut is used when the input layers have 
the exact dimensions as the output layer. Once the dimension rises, the projection 
shortcut is used for 1-1 Convolution. Both situations are carried out with a stride two if 
the shortcuts move across two-size maps. The network accomplishes a fully connected 
softmax layer (FC). 

3.5. Deep Features using XCeption Model
Xception is an enhancement of the Inception architecture, introduced by François 

Chollet (Kaiser, L., Gomez, A. N., & Chollet, F., 2017). This model is a continuous stack 
of layers of residual links. The thoroughly segregated process focuses on reducing 
memory and computational cost deserves. Xception has 170 layers and 36 fully 
Convolutional strips divided into 14 segments, except the first and last modules being 
linear residual links. Therefore, it allows the description and alteration of the 
architecture. Down-sampling is carried out directly by the Convolution layer with a 2-
step normalization immediately after any Convolutions and before ReLU activation. The 
independent activation function in Xception distinguishes the analysis of channel and 
spatial features. A comprehensive architecture of Xception is shown in Figure 7. A fully-
connected layer (FC) and softmax layer are used for classification purposes. The size 
of the image input layer is 299x299x3 as an RGB image. As an activation function, all 
hidden layers use the linear activation unit.

3.6. Features Selection and Fusion
The selection of the features shortens the feature vector and arranges the best 

features for the best classification results. Various tests check the elimination of feature 
vector functions. It re-assigns the chosen characteristics of a feature matrix from the 
most common features. After extracting shape-based features and in-depth features 
using different models, PCA is executed on the feature matrix because it is an 
unsupervised technique that ignores the class labels to obtain the extracted features' 
outcomes. Then the average score is measured by defining a selection threshold for 
higher scores characteristics. The threshold is chosen accordingly:

𝒮𝒮(𝑇𝑇ℎ𝑟𝑟) = f
𝑓𝑓𝑓𝑓(𝜄𝜄 + 1) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓(𝜄𝜄) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑓𝑓(−1) 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓(𝜄𝜄) < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (27)

The function 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)indicates the feasible selected features, where the index is 
more significant than their mean, and the features not selected are denoted by 𝑓𝑓𝑓𝑓(−1). 
The correlation is then determined between selected 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)features and high-
correlation features.

𝜌𝜌o𝑓𝑓𝑓𝑓(𝜄𝜄)p = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = VSP(!,")
W!W"

    (28)
𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = 𝐸𝐸[(𝜄𝜄 − 𝜇𝜇𝜇𝜇)(𝜁𝜁 − 𝜇𝜇𝜇𝜇)]     (29)

Where the mean of rows and columns vector is 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇, and 𝜎𝜎 denotes the default 
standard deviation. Fusion is an essential step in computer vision in which various 
features are merged in a string to produce the final classified feature vector. This phase 
is primarily motivated to collect all of the information from multiple descriptors in one 
vector that could be useful for the minimal error rate. The extracted elements above 
have been fused using a serial process, and a final vector fused using dimension 
N×560 has been obtained. Finally, the fused feature vector is fed to the classifier to 
classify the disease. One versus-one multiclass SVM was used for the chosen features. 

Fig. 5:  ResNet 50 (a) Deep CNN Architecture (b) Convolution Block (c) Identity Block

of H×W to the matrix in 3 dimensions. Kernel K is associated with the Convolutional 
layer h×w×3, while the Convolutional layer threshold is t. There are specified principal 
formulas for Convolutional layers as 

Χ; = Χ × Κ = ∑ (𝜒𝜒! + 𝜅𝜅!) + 𝜏𝜏#
!$%     (15) 

ℊ; = 	 ℊADE@×"
B

+ 1	      (16) 

Κ; = 		 FAGE@	×"
B

+ 1      (17) 
Where Κ denotes the kernel size, 𝐷𝐷 denotes the number of Convolutions, and 𝜏𝜏 is a 

threshold value. 
The initialization layer of ReLU is then carried out as follows: 

   Υ = max	(0, Χ)            (18) 
This equation shows that all negative values are transformed into zero after applying 

the function. The term pooling layer is another layer used to condense the number of 
features derived after the previous layers. Three different types of layers are used 
primarily as min, average, and max pooling. The strength of pooling is that the most 
relevant features are collected.  

Also, the formula is defined mathematically as follows: 
ρIJK	$:'L∱ (	.		,			.		, . )     (19) 
ρIMN$:O4∱ (	.		,			.		, . )      (20) 
ρ'P3 = 	 %

;
∑∱ (	.		,			.		, . )    (21) 

 Where ρIJK	 indicates the features of max-pooling layers, minimum pooling 
features are defined by ρIMN , and average pooling features by ρJQR The final layers 
of the CNN model, also known as fully connected layers, are described by the 
formulation below. 

ℒ!; = 𝑋𝑋 ×𝑊𝑊 +𝐷𝐷                                                     (22) 
ℒS7T = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿!;)                                                    (23) 

The FC layer is defined as follows from these generalized equations: 
ℒUS7T = 𝑋𝑋                                                           (24) 

	ℒ!!; = ℒ!A%S7T ×𝑊𝑊 +𝐷𝐷!                                                 (25) 
ℒ!S7T = Ϝ!(ℒ!!;)                                                    (26) 

Where	𝜄𝜄	is the number of layers implied, and Ϝ indicates the activation function. 
Residual (ResNets) networks are highly complex networks where blocks of the 

Convolution layer can be eliminated using shortcut links to other layers. The simple 
blocks referred to as 'Bottleneck' blocks are constructed. ResNet50 has 177 layers and 
50 fully Convolutional strips divided into 18 segments, except the first and last modules 
being linear residual links. Down-sampling is carried out directly by the Convolution 
layer with a 2-step normalization and is carried out immediately after any Convolutions 
and before ReLU activation. An identity Shortcut is used when the input layers have 
the exact dimensions as the output layer. Once the dimension rises, the projection 
shortcut is used for 1-1 Convolution. Both situations are carried out with a stride two if 
the shortcuts move across two-size maps. The network accomplishes a fully connected 
softmax layer (FC).  

 
3.5. Deep Features using XCeption Model 
Xception is an enhancement of the Inception architecture, introduced by François 

Chollet (Kaiser, L., Gomez, A. N., & Chollet, F., 2017). This model is a continuous stack 
of layers of residual links. The thoroughly segregated process focuses on reducing 
memory and computational cost deserves. Xception has 170 layers and 36 fully 
Convolutional strips divided into 14 segments, except the first and last modules being 
linear residual links. Therefore, it allows the description and alteration of the 
architecture. Down-sampling is carried out directly by the Convolution layer with a 2-
step normalization immediately after any Convolutions and before ReLU activation. The 
independent activation function in Xception distinguishes the analysis of channel and 
spatial features. A comprehensive architecture of Xception is shown in Figure 7. A fully-
connected layer (FC) and softmax layer are used for classification purposes. The size 
of the image input layer is 299x299x3 as an RGB image. As an activation function, all 
hidden layers use the linear activation unit. 

 
3.6. Features Selection and Fusion 
The selection of the features shortens the feature vector and arranges the best 

features for the best classification results. Various tests check the elimination of feature 
vector functions. It re-assigns the chosen characteristics of a feature matrix from the 
most common features. After extracting shape-based features and in-depth features 
using different models, PCA is executed on the feature matrix because it is an 
unsupervised technique that ignores the class labels to obtain the extracted features' 
outcomes. Then the average score is measured by defining a selection threshold for 
higher scores characteristics. The threshold is chosen accordingly: 

𝒮𝒮(𝑇𝑇ℎ𝑟𝑟) = f
𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)								𝑖𝑖𝑖𝑖		𝑓𝑓𝑓𝑓(𝜄𝜄) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑓𝑓(−1)										𝑖𝑖𝑖𝑖	𝑓𝑓𝑓𝑓(𝜄𝜄) < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (27) 

The function 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)indicates the feasible selected features, where the index is 
more significant than their mean, and the features not selected are denoted by 𝑓𝑓𝑓𝑓(−1). 
The correlation is then determined between selected 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)features and high-
correlation features. 

𝜌𝜌o𝑓𝑓𝑓𝑓(𝜄𝜄)p = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = VSP(!,")
W!W"

       (28) 
𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = 𝐸𝐸[(𝜄𝜄 − 𝜇𝜇𝜇𝜇)(𝜁𝜁 − 𝜇𝜇𝜇𝜇)]       (29) 

Where the mean of rows and columns vector is 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇, and 𝜎𝜎 denotes the default 
standard deviation. Fusion is an essential step in computer vision in which various 
features are merged in a string to produce the final classified feature vector. This phase 
is primarily motivated to collect all of the information from multiple descriptors in one 
vector that could be useful for the minimal error rate. The extracted elements above 
have been fused using a serial process, and a final vector fused using dimension 
N×560 has been obtained. Finally, the fused feature vector is fed to the classifier to 
classify the disease. One versus-one multiclass SVM was used for the chosen features.  
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Fig. 6:  Xception (a) Deep CNN Architecture (b) Convolution Block 1  (c) Convolution 
Block 2 (d) Identity Block

of H×W to the matrix in 3 dimensions. Kernel K is associated with the Convolutional 
layer h×w×3, while the Convolutional layer threshold is t. There are specified principal 
formulas for Convolutional layers as 

Χ; = Χ × Κ = ∑ (𝜒𝜒! + 𝜅𝜅!) + 𝜏𝜏#
!$%     (15) 

ℊ; = 	 ℊADE@×"
B

+ 1	      (16) 

Κ; = 		 FAGE@	×"
B

+ 1      (17) 
Where Κ denotes the kernel size, 𝐷𝐷 denotes the number of Convolutions, and 𝜏𝜏 is a 

threshold value. 
The initialization layer of ReLU is then carried out as follows: 

   Υ = max	(0, Χ)            (18) 
This equation shows that all negative values are transformed into zero after applying 

the function. The term pooling layer is another layer used to condense the number of 
features derived after the previous layers. Three different types of layers are used 
primarily as min, average, and max pooling. The strength of pooling is that the most 
relevant features are collected.  

Also, the formula is defined mathematically as follows: 
ρIJK	$:'L∱ (	.		,			.		, . )     (19) 
ρIMN$:O4∱ (	.		,			.		, . )      (20) 
ρ'P3 = 	 %

;
∑∱ (	.		,			.		, . )    (21) 

 Where ρIJK	 indicates the features of max-pooling layers, minimum pooling 
features are defined by ρIMN , and average pooling features by ρJQR The final layers 
of the CNN model, also known as fully connected layers, are described by the 
formulation below. 

ℒ!; = 𝑋𝑋 ×𝑊𝑊 +𝐷𝐷                                                     (22) 
ℒS7T = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿!;)                                                    (23) 

The FC layer is defined as follows from these generalized equations: 
ℒUS7T = 𝑋𝑋                                                           (24) 

	ℒ!!; = ℒ!A%S7T ×𝑊𝑊 +𝐷𝐷!                                                 (25) 
ℒ!S7T = Ϝ!(ℒ!!;)                                                    (26) 

Where	𝜄𝜄	is the number of layers implied, and Ϝ indicates the activation function. 
Residual (ResNets) networks are highly complex networks where blocks of the 

Convolution layer can be eliminated using shortcut links to other layers. The simple 
blocks referred to as 'Bottleneck' blocks are constructed. ResNet50 has 177 layers and 
50 fully Convolutional strips divided into 18 segments, except the first and last modules 
being linear residual links. Down-sampling is carried out directly by the Convolution 
layer with a 2-step normalization and is carried out immediately after any Convolutions 
and before ReLU activation. An identity Shortcut is used when the input layers have 
the exact dimensions as the output layer. Once the dimension rises, the projection 
shortcut is used for 1-1 Convolution. Both situations are carried out with a stride two if 
the shortcuts move across two-size maps. The network accomplishes a fully connected 
softmax layer (FC).  

 
3.5. Deep Features using XCeption Model 
Xception is an enhancement of the Inception architecture, introduced by François 

Chollet (Kaiser, L., Gomez, A. N., & Chollet, F., 2017). This model is a continuous stack 
of layers of residual links. The thoroughly segregated process focuses on reducing 
memory and computational cost deserves. Xception has 170 layers and 36 fully 
Convolutional strips divided into 14 segments, except the first and last modules being 
linear residual links. Therefore, it allows the description and alteration of the 
architecture. Down-sampling is carried out directly by the Convolution layer with a 2-
step normalization immediately after any Convolutions and before ReLU activation. The 
independent activation function in Xception distinguishes the analysis of channel and 
spatial features. A comprehensive architecture of Xception is shown in Figure 7. A fully-
connected layer (FC) and softmax layer are used for classification purposes. The size 
of the image input layer is 299x299x3 as an RGB image. As an activation function, all 
hidden layers use the linear activation unit. 

 
3.6. Features Selection and Fusion 
The selection of the features shortens the feature vector and arranges the best 

features for the best classification results. Various tests check the elimination of feature 
vector functions. It re-assigns the chosen characteristics of a feature matrix from the 
most common features. After extracting shape-based features and in-depth features 
using different models, PCA is executed on the feature matrix because it is an 
unsupervised technique that ignores the class labels to obtain the extracted features' 
outcomes. Then the average score is measured by defining a selection threshold for 
higher scores characteristics. The threshold is chosen accordingly: 

𝒮𝒮(𝑇𝑇ℎ𝑟𝑟) = f
𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)								𝑖𝑖𝑖𝑖		𝑓𝑓𝑓𝑓(𝜄𝜄) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑓𝑓(−1)										𝑖𝑖𝑖𝑖	𝑓𝑓𝑓𝑓(𝜄𝜄) < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (27) 

The function 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)indicates the feasible selected features, where the index is 
more significant than their mean, and the features not selected are denoted by 𝑓𝑓𝑓𝑓(−1). 
The correlation is then determined between selected 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)features and high-
correlation features. 

𝜌𝜌o𝑓𝑓𝑓𝑓(𝜄𝜄)p = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = VSP(!,")
W!W"

       (28) 
𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = 𝐸𝐸[(𝜄𝜄 − 𝜇𝜇𝜇𝜇)(𝜁𝜁 − 𝜇𝜇𝜇𝜇)]       (29) 

Where the mean of rows and columns vector is 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇, and 𝜎𝜎 denotes the default 
standard deviation. Fusion is an essential step in computer vision in which various 
features are merged in a string to produce the final classified feature vector. This phase 
is primarily motivated to collect all of the information from multiple descriptors in one 
vector that could be useful for the minimal error rate. The extracted elements above 
have been fused using a serial process, and a final vector fused using dimension 
N×560 has been obtained. Finally, the fused feature vector is fed to the classifier to 
classify the disease. One versus-one multiclass SVM was used for the chosen features.  
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of H×W to the matrix in 3 dimensions. Kernel K is associated with the Convolutional 
layer h×w×3, while the Convolutional layer threshold is t. There are specified principal 
formulas for Convolutional layers as 

Χ; = Χ × Κ = ∑ (𝜒𝜒! + 𝜅𝜅!) + 𝜏𝜏#
!$%     (15) 

ℊ; = 	 ℊADE@×"
B

+ 1	      (16) 

Κ; = 		 FAGE@	×"
B

+ 1      (17) 
Where Κ denotes the kernel size, 𝐷𝐷 denotes the number of Convolutions, and 𝜏𝜏 is a 

threshold value. 
The initialization layer of ReLU is then carried out as follows: 

   Υ = max	(0, Χ)            (18) 
This equation shows that all negative values are transformed into zero after applying 

the function. The term pooling layer is another layer used to condense the number of 
features derived after the previous layers. Three different types of layers are used 
primarily as min, average, and max pooling. The strength of pooling is that the most 
relevant features are collected.  

Also, the formula is defined mathematically as follows: 
ρIJK	$:'L∱ (	.		,			.		, . )     (19) 
ρIMN$:O4∱ (	.		,			.		, . )      (20) 
ρ'P3 = 	 %

;
∑∱ (	.		,			.		, . )    (21) 

 Where ρIJK	 indicates the features of max-pooling layers, minimum pooling 
features are defined by ρIMN , and average pooling features by ρJQR The final layers 
of the CNN model, also known as fully connected layers, are described by the 
formulation below. 

ℒ!; = 𝑋𝑋 ×𝑊𝑊 +𝐷𝐷                                                     (22) 
ℒS7T = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐿𝐿!;)                                                    (23) 

The FC layer is defined as follows from these generalized equations: 
ℒUS7T = 𝑋𝑋                                                           (24) 

	ℒ!!; = ℒ!A%S7T ×𝑊𝑊 +𝐷𝐷!                                                 (25) 
ℒ!S7T = Ϝ!(ℒ!!;)                                                    (26) 

Where	𝜄𝜄	is the number of layers implied, and Ϝ indicates the activation function. 
Residual (ResNets) networks are highly complex networks where blocks of the 

Convolution layer can be eliminated using shortcut links to other layers. The simple 
blocks referred to as 'Bottleneck' blocks are constructed. ResNet50 has 177 layers and 
50 fully Convolutional strips divided into 18 segments, except the first and last modules 
being linear residual links. Down-sampling is carried out directly by the Convolution 
layer with a 2-step normalization and is carried out immediately after any Convolutions 
and before ReLU activation. An identity Shortcut is used when the input layers have 
the exact dimensions as the output layer. Once the dimension rises, the projection 
shortcut is used for 1-1 Convolution. Both situations are carried out with a stride two if 
the shortcuts move across two-size maps. The network accomplishes a fully connected 
softmax layer (FC).  

 
3.5. Deep Features using XCeption Model 
Xception is an enhancement of the Inception architecture, introduced by François 

Chollet (Kaiser, L., Gomez, A. N., & Chollet, F., 2017). This model is a continuous stack 
of layers of residual links. The thoroughly segregated process focuses on reducing 
memory and computational cost deserves. Xception has 170 layers and 36 fully 
Convolutional strips divided into 14 segments, except the first and last modules being 
linear residual links. Therefore, it allows the description and alteration of the 
architecture. Down-sampling is carried out directly by the Convolution layer with a 2-
step normalization immediately after any Convolutions and before ReLU activation. The 
independent activation function in Xception distinguishes the analysis of channel and 
spatial features. A comprehensive architecture of Xception is shown in Figure 7. A fully-
connected layer (FC) and softmax layer are used for classification purposes. The size 
of the image input layer is 299x299x3 as an RGB image. As an activation function, all 
hidden layers use the linear activation unit. 

 
3.6. Features Selection and Fusion 
The selection of the features shortens the feature vector and arranges the best 

features for the best classification results. Various tests check the elimination of feature 
vector functions. It re-assigns the chosen characteristics of a feature matrix from the 
most common features. After extracting shape-based features and in-depth features 
using different models, PCA is executed on the feature matrix because it is an 
unsupervised technique that ignores the class labels to obtain the extracted features' 
outcomes. Then the average score is measured by defining a selection threshold for 
higher scores characteristics. The threshold is chosen accordingly: 

𝒮𝒮(𝑇𝑇ℎ𝑟𝑟) = f
𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)								𝑖𝑖𝑖𝑖		𝑓𝑓𝑓𝑓(𝜄𝜄) ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑓𝑓𝑓𝑓(−1)										𝑖𝑖𝑖𝑖	𝑓𝑓𝑓𝑓(𝜄𝜄) < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)   (27) 

The function 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)indicates the feasible selected features, where the index is 
more significant than their mean, and the features not selected are denoted by 𝑓𝑓𝑓𝑓(−1). 
The correlation is then determined between selected 𝑓𝑓𝑓𝑓(𝜄𝜄 + 1)features and high-
correlation features. 

𝜌𝜌o𝑓𝑓𝑓𝑓(𝜄𝜄)p = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = VSP(!,")
W!W"

       (28) 
𝐶𝐶𝐶𝐶𝐶𝐶(𝜄𝜄, 𝜁𝜁) = 𝐸𝐸[(𝜄𝜄 − 𝜇𝜇𝜇𝜇)(𝜁𝜁 − 𝜇𝜇𝜇𝜇)]       (29) 

Where the mean of rows and columns vector is 𝜇𝜇𝜇𝜇 and 𝜇𝜇𝜇𝜇, and 𝜎𝜎 denotes the default 
standard deviation. Fusion is an essential step in computer vision in which various 
features are merged in a string to produce the final classified feature vector. This phase 
is primarily motivated to collect all of the information from multiple descriptors in one 
vector that could be useful for the minimal error rate. The extracted elements above 
have been fused using a serial process, and a final vector fused using dimension 
N×560 has been obtained. Finally, the fused feature vector is fed to the classifier to 
classify the disease. One versus-one multiclass SVM was used for the chosen features.  

 
4. Experimental Results and Analysis
A detailed analysis and evaluation of the experimental data is presented in this 

section. The proposed system uses the Kvasir dataset. This dataset contains four 
different categories: (a) healthy, (b) ulcer, (c) polyp, and (d) esophagitis. The results 
are collected through six classifications, including Medium Tree, Linear Discriminant 
Analysis, Kernel Naive Bayes, Linear SVM, Cosine KNN, And Ensemble Subspace KNN, 
to make a sustainable analysis and comparison of the system proposed. All strategies 
are evaluated on various features, as outlined in Table 1. Classification measurements 
like recall, accuracy, precision, FNR, F1 score, number of observations per second, 
and execution time of each classifier are calculated. All results are computed through 
10-fold cross-validation.

4.1. Dataset
This research uses the Kvasir dataset to classify GI tract diseases. Kvasir contains 

10,000 images, originally recorded and verified by doctors (professional endoscopists), 
including a healthy class and eight classes with lesion sites, pathologies, or GI 
endoscopy processes. To be used for different purposes, for example, image recovery, 
machine learning, deep learning, and transfer learning. The number of images is 
adequate. Anatomical features such as Z line, pylorus, and cecum, while esophagitis, 
polyps, and Crohn's disease-like ulcers are pathological observations[73].

Moreover, two images dataset relevant to the extraction of polyps, "dyed and lifted 
polyp" and the "dyed resection margins," are also included. The dataset contains 
images from 720x576 to 1920x1072 pixels with different resolutions and is designed 
in a manner that is sorted in a different folder with their respective content names. 
This research classifies four classes: Esophagitis, Healthy, Polyp, and Ulcer. Each 
class contains 1000 images of their respective class. Polyp images are also obtained 
from two other datasets. One hundred ninety-six polyp images are obtained from 
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ETIS-LaribPolypDB [74], while 612 polyp images are obtained from CVC-ColobDB 
(Hajabdollahi, M., et al., 2018) dataset. Entire images are increased up to 9616 by the 
data augmentation technique.

4.2. Overview of Experiments
We performed six experiments using distinct criteria for qualitative analysis. The 

description of all the tests, including the number of features and average accuracy, 
are listed in Table 1. All the tests are evaluated on the Kvasir dataset having four 
different classes. Nine thousand six hundred sixteen images are used for classification 
purposes. Tests 1, 3 & 5 are performed using PCA for feature reduction, while tests 
2, 4 & 6 use Entropy for the feature reduction process. Table 1 describes the detailed 
evaluations of each test.

Table 1 Summary of Test Settings
Experi-
ment

Number of Features Fused 
Feature 
Vector

Feature 
Reduc-

tion

Aver-
age 

Accu-
racy

Time 
Con-

sumed
HOG Xcep-

tion
ResNet50

Test 1 60 250 250 560 PCA 96.6 65.17
Test 2 60 250 250 560 Entropy 95.9 36.53
Test 3 120 500 500 1120 PCA 96.4 150.08
Test 4 120 500 500 1120 Entropy 96.2 58.96
Test 5 180 750 750 1680 PCA 95.9 254.09
Test 6 180 750 750 1680 Entropy 95.2 88.45

4.2.1. Test 1
In test 1, PCA reduces the feature vector's dimensionality. The maximum 

classification rate for Linear SVM, as shown in Table 2, is 96.60 percent with recall 
(96.87%) and precision (96.53%), as shown in Table 2. The minimum FNR achieved 
by the LSVM is 3.4, while the F1 score is 96.54. Figure 8 shows the performance of the 
Linear SVM analysis by the confusion matrix. The second highest achieved accuracy 
is 94.1 percent on Cosine KNN using the same feature set. The worst accuracy in Test 
1 is 86.5%, achieved by Medium Tree. The minimum time consumed in test case 1 is 
21.92sec by Kernal Naïve Bayes, but the performance of Kernal Naïve Bayes in terms 
of accuracy is deficient. The time consumed by each classifier is shown in Figure 9. 
According to the above analysis, the proposed methodology is well implemented for 
the feature vector size N×560 of the function.
Table 2. Test 1 Classification Results

Classifier Acc
(%)

Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)
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Medium Tree 86.5 86.4 86.6 13.5 86.43 7600.00 23.85
Linear Discriminant 

Analysis
95.5 95.37 95.33 4.5 95.39 2800.00 28.287

Kernel Naive Bayes 86.9 85.85 87.35 13.2 86.85 4400.00 21.92
Linear SVM 96.6 96.53 96.87 3.4 96.54 4000.00 65.17
Cosine KNN 94.1 94.90 95.37 6.0 94.02 450.00 39.09

Ensemble Subspace 
KNN

91.1 90.45 91.13 8.9 91.13 760.00 105.37

Fig. 7:  Test 1 Confusion Matrix of Linear SVM

Fig. 8:  Time Analysis of Test Case 1
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4.2.2. Test 2
Entropy is used to reduce the feature vector's dimensionality in test case 2. The 

maximum classifi cation rate for Linear SVM, as set out in Table 2, is 95.90 percent with 
recall (95.95%) and precision (96.0%), as shown in Table 3. The minimum FNR achieved 
by the LSVM is 4.1, while the F1 score is 95.94. The second highest achieved accuracy 
is 92.0 percent on Cosine KNN using the same feature set. The worst accuracy in 
Test 2 is 71.4%, achieved by Medium Tree. The minimum time consumed in test case 
2 is 24.10sec by LDA. The time consumed by each classifi er is shown in Figure 10. 
According to the above analysis, the proposed methodology is well implemented for 
the feature vector size N×560 of the function.
Table 3. Test 2 Classifi cation Results

Classifi er Acc
(%)

Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)

Medium Tree 71.4 71.3 71.5 28.6 71.50 5300.00 49.86
Linear Discriminant 

Analysis
90.1 89.35 90.6 9.9 89.42 3000.00 24.10

Kernel Naive Bayes 90.3 89.33 89.25 9.7 90.33 3900.00 25.78
Linear SVM 95.9 96.0 95.95 4.1 95.94 3600.00 36.53
Cosine KNN 92.0 91.87 92.1 8.0 92.10 450.00 40.63

Ensemble Subspace 
KNN

88.0 87.95 87.95 12.1 87.95 730.00 109.09

Fig. 9:  Time analysis of Test Case 2

4.2.3. Test 3
In test 3, PCA is applied on a feature vector of size N×1120 extracted from the 
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entire dataset. The maximum classifi cation rate for Linear SVM, as set out in Table 4, is 
96.40 percent with recall (96.87%) and precision (96.53%), as shown in Table 4. The 
minimum FNR achieved by the LSVM is 3.4, while the F1 score is 96.43. The second 
highest achieved accuracy is 93.8 percent on Cosine KNN using the same feature 
set. The worst accuracy in Test 1 is 83.9%, achieved by Kernal Naïve Bayes. The 
minimum time consumed in test case 3 is 24.10sec by LDA. The time consumed by 
each classifi er is shown in Figure 9. 
Table 4. Test 3 Classifi cation Results

Classifi er Acc
(%)

Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)

Medium Tree 86.5 86.4 86.57 13.5 86.55 2200.00 55.38
Linear Discriminant 

Analysis
90.1 89.35 90.6 9.9 89.42 3000.00 24.10

Kernel Naive Bayes 83.9 83.25 84.50 16.1 83.93 1500.00 57.27
Linear SVM 96.4 96.3 96.23 3.6 96.43 1900.00 150.08
Cosine KNN 93.8 93.6 93.72 6.2 93.70 230.00 77.92

Ensemble Subspace 
KNN

92.6 92.36 92.61 7.4 92.60 200.00 292.54

Fig. 10: Time Analysis of Test Case 3

4.2.4. Test 4
In test 4, Entropy is applied on a feature vector of size N×1120. The maximum 

classifi cation rate for Linear SVM, as set out in Table 4, is 96.20 percent with recall 
(96.2%) and precision (96.12%), as shown in Table 5. The minimum FNR achieved by 
the LSVM is 3.8, while the F1 score is 96.2. The second highest achieved accuracy 
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Fig. 11: Time analysis of Test Case 4

is 96.1 percent on Ensemble Subspace KNN using the same feature set. The worst 
accuracy in Test 4 is 80.3%, achieved by Medium Tree. The minimum time consumed 
in test case 4 is 47.94sec by LDA. The time consumed by each classifi er is shown in 
Figure 9.
Table 5. Test 4 Classifi cation Results

Classifi er Acc
(%)

Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)

Medium Tree 80.3 80.21 80.24 19.7 80.36 2500.00 56.38
Linear Discriminant 

Analysis
95.4 95.4 95.27 4.6 95.35 1100.00 47.94

Kernel Naive Bayes 92.5 91.75 93.42 7.5 92.48 1600.00 55.82
Linear SVM 96.2 96.12 96.2 3.8 96.20 1800.00 58.96
Cosine KNN 92.7 92.7 92.59 7.3 92.78 220.00 78.70

Ensemble Subspace 
KNN

96.1 95.31 97.23 3.9 96.10 200.00 301.38

4.2.5. Test 5
In test 5, PCA is applied on a feature vector of size N×1680. The maximum 

classifi cation rate for Linear SVM, as set out in Table 4, is 95.90 percent with recall 
(95.97%) and precision (95.7%), as shown in Table 6. The minimum FNR achieved by 
the LSVM is 4.1, while the F1 score is 95.71. The second highest achieved accuracy is 
95.2 percent on LDA using the same feature set. The worst accuracy in Test 5 is 86.4%, 
achieved by Medium Tree. The minimum time consumed in test case 5 is 77.23sec by 
Medium Tree. The time consumed by each classifi er is shown in Figure 10.
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Table 6. Test 5 Classifi cation Results
Classifi er Acc

(%)
Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)

Medium Tree 86.4 86.3 86.38 13.7 86.42 1600.00 77.23
Linear Discriminant 

Analysis
95.2 95.34 95.3 4.8 95.10 710.00

99.96
Kernel Naive Bayes 81.0 80.42 81.37 19.0 81.00 1100.00 79.16

Linear SVM 95.9 95.7 95.97 4.1 95.71 1000.00 254.09
Cosine KNN 93.2 93.2 93.31 6.8 93.17 150.00 122.98

Ensemble Subspace 
KNN

93.5 93.15 93.61 6.5 93.45 110.00
658.09

Fig. 12: Time analysis of Test Case 5

4.2.6. Test 6
 In test 6, Entropy is applied on a feature vector of size N×1680. The maximum 

classifi cation rate for Linear SVM, as set out in Table 4, is 95.2 percent with recall 
(95.09%) and precision (95.14%), as shown in Table 7. The minimum FNR achieved by 
the LSVM is 4.8, while the F1 score is 95.32. The second highest achieved accuracy is 
94.6 percent on LDA using the same feature set. The worst accuracy in Test 6 is 79.9%, 
achieved by Medium Tree. The minimum time consumed in test case 6 is 88.45sec by 
LSVM. The time consumed by each classifi er is shown in Figure 10.

Table 7. Test 6 Classifi cation Results
Classifi er Acc

(%)
Pre
(%)

Rec
(%)

FNR
(%)

F1 
Score
(%)

Speed
(obs/
sec)

Time
(sec)
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Medium Tree 79.9 79.7 79.72 20.1 79.77 1400.00 92.09
Linear Discriminant 

Analysis
94.6 94.6 94.69 5.4 94.51 730.00 99.05

Kernel Naive Bayes 92.2 93.28 91.57 7.8 92.20 800.00 95.45
Linear SVM 95.2 95.14 95.09 4.8 95.32 1100.00 88.45
Cosine KNN 92.8 92.8 92.7 7.2 92.87 150.00 119.45

Ensemble Subspace 
KNN

88.1 87.87 88.53 12.0 88.17 120.00 583.45

Fig. 13: Time Analysis of Test Case 6

4.3. Comparison with Existing Techniques
We also equated the performance of the proposed algorithm with current GI tract 

disease classifi cation techniques, as seen in Table 8. The graphical description of 
contrasts with current GI tract disease classifi cation methods described in Figure 14 
shows that the proposed scheme acquires the best recall, accuracy, and precision 
classifi cation outcomes. All the given outcomes are trained on Kvasir Dataset. 96.6 
percent of Kvasir data set accuracy achieved by the proposed approach is better 
than the existing methods. Asperti et al. achieved 91.5% accuracy by classifying GI 
tract diseases through data augmentation. Pozdeev et al. attained 88.0% accuracy by 
binary classifying the disease by fusing global features of the input images. Poudel 
et al. accomplished 95.7% accuracy by dilation in CNN using ResNet50 architecture.
Table 8. Comparison with Existing Techniques

Ref Classifi er Year Accuracy (%) Recall (%) Precision (%)
[75] Ensemble (As-

perti et al)
2018 91.5 91.5 91.5
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[76] SVM (Pozdev 
et al)

2019 88.0 93.0 82.0

[77] CNN-Res-
Net50 (Poudel 

et al)

2020 95.7 92.2 86.8

Proposed Linear SVM 2022 96.6 96.87 96.53

Fig. 14: Comparison with Existing Techniques

4.4. Discussion
This research evaluates the experimental fi ndings in detail using the suggested 

methodology focused on recall, precision, and accuracy. There are four main steps 
in the proposed algorithm, with preprocessing as the fi rst step and extraction of 
features as the second one. The third step is the selection of features, then fusion, 
and fi nally, classifi cation. The lesion contrast is enhanced in a preprocessing step 
with a 3D Median Filter. Furthermore, the shape characteristics of the preprocessed 
image are obtained. Deep CNN features are also extracted. The features extracted are 
fused in a single matrix and selected by the PCA and Entropy later. We also used six 
classifi cations: Medium Tree, Linear Discriminant Analysis, Linear SVM, Kernel Naive 
Bayes, Cosine KNN, and Ensemble Subspace KNN. In this approach, we have used 
four classes: Esophagitis, polyps, ulcers, and healthy, with features vectors: N×560, 
N×1120, and N×1680; however, the best accuracy is obtained by LSVM having feature 
vector size N×560. The accuracies are described in Table 2, Table 3, Table 4, Table 
5, Table 6, and Table 7: 96.6%, 95.9%,96.4%, 96.2%, 95.9%, and 95.2%, respectively. 
Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14 shows the time 
consumed by each classifi er graphically. 

From the debate above, it is evident that the PCA performs best on minimal 
characteristic vectors and is more reliable than the high dimensional vectors. Entropy 
outperforms best by utilizing less time.
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Conclusion
In this document, we suggested a system to classify GI tract diseases image 

composed of four pipeline systems, including preprocessing, extraction, selection, the 
fusion of features, and classification. We have inferred from the above findings and 
debate that the classification of GI tract diseases in the WCE dataset is tackled through 
the recommended Deep CNN characteristics fusion method. This technique can be 
used for GI tract disease images of WCE. We have also concluded that for classifying 
target classes like esophagitis, ulcers, polyps, and every day, shape characteristics 
are also essential. Because of the representation of WCE diseases, shape features 
are essential, and the extracted features are efficiently handled. Besides, the 
selection and fusion approaches also remain essential in the context of accuracy and 
sensitivity to enhance system performance. The analysis findings indicate that the new 
system's efficiency concerning the current methods exceeded 96%. Results show 
that combining in-depth features with handcrafted features improves accuracy but 
does not ultimately enhance the desired efficiency by adding unnecessary features. 
Selecting the most robust features reduces redundant data, significantly improving 
identification accuracy. In future research, we will concentrate on more GI diseases 
and study how to improve the quality of the detection system.
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