
113

Resource Discovery in Distributed Exascale
Systems using a Multi-Agent Model:
Categorization of Agents Based on Their
Characteristics
Fakhraddin Abdullayev
Azerbaijan State Oil and Industry University, Baku, Azerbaijan, fexreddinabdullayev98@
gmail.com

*Correspondence:
Fakhraddin Abdullayev,
Azerbaijan State Oil and
Industry University, Baku,
Azerbaijan, fexreddinab-
dullayev98@gmail.com

Abstract
Resource discovery is a crucial component in high-perfor-
mance computing (HPC) systems. This paper presents a
multi-agent model for resource discovery in distributed ex-
ascale systems. Agents are categorized based on resource
types and behavior-specific characteristics. The model en-
ables efficient identification and acquisition of memory,
process, file, and IO resources. Through a comprehensive
exploration, we highlight the potential of our approach in ad-
dressing resource discovery challenges in exascale comput-
ing systems, paving the way for optimized resource utilization
and enhanced system performance.

Keyword: HPC, Resource Discovery, Agents, Dynamic and
Interactive Event, Exascale Systems.

Azerbaijan Journal of High Performance Computing, Vol 6, Issue 1, 2023, pp. 113-120
https://doi.org/10.32010/26166127.2023.6.1.113.120

1. Introduction
Unlike traditional systems, processes in distributed exascale computing systems

exhibit dynamic and interactive nature. The dynamic and interactive nature of processes
manifests itself in the following three ways:

a) A process in the system creates an undefined process during the design of the
computing system (Adibi, E., & Khaneghah, E. M., 2018).

b) There is an inter-process communication and interaction between other processes
within the system, which is not defined during the design of the system (Adibi, E., &
Khaneghah, E. M., 2018).

c) There is an inter-process communication and interaction between other processes
outside the system, which is not defined during the design of the system (Adibi, E., &
Khaneghah, E. M., 2018).

The situations described in cases a) and c) are related to the unavailability of
the required resources to execute the assigned process in the system. An efficient
resource discovery mechanism should be implemented in a distributed exascale
system to address this. Efficient resource discovery is essential for achieving optimal
utilization of computational resources and enabling high-performance computing in

114

distributed exascale systems. As the scale and complexity of these systems continue
to grow, conventional centralized approaches to resource discovery need to be
revised to meet the requirements of such environments. Consequently, researchers
have shifted towards decentralized decision-making and harnessing the capabilities of
autonomous agents to effectively tackle resource discovery challenges by employing
agent-based models.

This article introduces a novel approach to resource discovery in distributed
exascale systems by utilizing a multi-agent model that categorizes agents based
on their specific characteristics. By combining agent-based modeling with resource
classification, our proposed system offers an efficient and scalable solution for
identifying and acquiring various types of resources, such as memory, processes, and
I/O, while accounting for agent behaviors specific to resource search and utilization.

The main idea of our approach is to decentralize the resource discovery process by
enabling autonomous agents capable of gathering information about their respective
environments, establishing communication with neighboring peers, and making
intelligent decisions to acquire resources. By categorizing agents based on their
characteristics, we enhance the efficiency and effectiveness of the resource discovery
process.

The first aspect of agent categorization revolves around resource types. Various
resources possess unique characteristics and demands, requiring specialized
agents' involvement for effective exploration and acquisition. For instance, agents
specialized in memory resource discovery are equipped with specific expertise and
strategies for memory allocation and management. Likewise, agents focused on
process or I/O resource discovery are endowed with specialized capabilities tailored
to those particular resource types. This categorization enhances system performance,
facilitating purposeful and efficient resource acquisition.

The second aspect of categorization delves into the behavior of agents. Agents
demonstrate distinct behaviors when exploring resources in neighboring peers, which
are essential for adapting to the dynamic nature of exascale systems. By categorizing
agents according to their behavioral attributes, we empower them to effectively handle
such situations by making informed decisions rooted in maintaining system stability
while achieving efficient resource acquisition.

2. Related Works
Adibi, E., & Mousavi Khaneghah, E. (2020) presents a framework to empower

resource discovery units in distributed Exascale computing systems. The framework
enables efficient resource discovery and effective management of dynamic and
interactive events in these systems. Through analysis, the impacts of the dynamic
and interactive nature on the functionality of the resource discovery unit (ExaRD) are
examined, leading to decisions regarding framework elements and functionality.

Dimakopoulos, V. V., & Pitoura, E. (2003, August) propose a distributed approach

Fakhraddin Abdullayev

115

for resource discovery in multi-agent systems. Agents maintain a local cache with
information about available resources, and neighboring agents are contacted if the
requested resource is not found in the cache. Variations of the flooding-based search
method are explored and evaluated through simulations.

Kambayashi, Y., & Harada, Y. (2007) present an efficient resource-locating method
using a multi-agent approach in a pure P2P system. The system model is based on a
distributed hash table (DHT) P2P system, consisting of high-performance nodes with
DHT and regular nodes without DHT. Cooperative multi-agents manage and organize
the resources and their information. To reduce communication traffic, migrating multi-
agents are strategically clustered based on logical similarity.

Ding, S., Yuan, J., & Hu, L. (2005, March) present an agent-based resource
management model, focusing on the structure and function of the agents. The
model adopts a "First Come, First Served" strategy based on local resources for task
assignments. A heuristic algorithm is proposed to facilitate resource management,
utilizing resource advertisement and discovery techniques. The agents are organized
in a graph, and the algorithm emphasizes multi-agent cooperation to schedule tasks
effectively. This methodology aims to optimize task scheduling within the resource
management framework.

Tan, Y., Han, J., & Wu, Y. (2010) present a survey of research that integrates multi-
agent systems and peer-to-peer resource discovery services in Grid systems. The
proposed discovery services aim to possess desirable features such as scalability,
reliability, self-organization, and self-healing. These features enable efficient resource
search by leveraging replication mechanisms and facilitating query operations.

In (Tan, Y., & Zheng, Z., 2009, May) proposed multi-agent approach for resource
discovery in P2P systems addresses the challenges of locating shared resources
in decentralized networks. Agents maintain local resource information, and mobile
agents migrate to uncover resources, reducing resource discovery time and improving
scalability and robustness.

In (Yamasaki, J., & Kambayashi, Y., 2010, November), an efficient resource locating
method is proposed for peer-to-peer (P2P) systems using a multi-agent system. The
method utilizes the ant colony optimization (ACO) algorithm to assist mobile agents
in finding resource-rich nodes. However, alternative algorithms, such as the honey
bee algorithm, have been suggested to be more efficient for resource discovery. This
paper explores the integration of bee-like agents into the resource discovery method
to optimize the behavior of mobile agents. The goal is to achieve efficient migration
through direct communication between bee agents on the dance floor rather than
indirect pheromone-based communication.

Zarrin, J., Aguiar, R. L., & Barraca, J. P. (2018) address the challenge of resource
discovery in large-scale distributed computing environments that offer diverse and
heterogeneous computing resources for sharing and distributed computing. The
authors investigate the current state of resource discovery protocols, mechanisms, and

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

116

platforms, specifically focusing on design aspects. The paper classifies the relevant
aspects, general steps, and requirements for constructing a novel resource discovery
solution into three categories: structures, methods, and issues.

2. Categorization of Agents
In contrast to traditional computing systems, our proposed approach in distributed

exascale computing systems adopts a multi-agent framework. In the proposed
approach, agents are programs responsible for conducting resource discovery. These
agents are specialized programs with autonomous functionality that automatically
perform resource search operations. Agents in this framework are categorized based
on two concepts: 1. Resource type and 2—search behavior.

2.1.	 Resource-specific	Agents
These agents are specifically assigned to search for designated resources. Their

classification is determined by the types of resources they are intended to explore. The
resource types considered include processes, memory, files, and IO. Consequently,
the resource-specific agents are further classified into four distinct groups:

1. Process agents: These specialized agents are responsible for discovering
resources capable of executing processes efficiently and effectively. The process can
be executed on CPU, GPU, and TPU resources. Each of these devices is specialized
for specific types of operations (Raj, P., & Sekhar, C., 2020). Process agents store their
operation pool and input arguments, enabling them to determine whether the required
operation is assigned to them during resource discovery.

2. Memory agents: Agents in this category are designed to identify and acquire
memory resources, ensuring optimized memory allocation and management. When
referring to memory, it can encompass RAM and swap memory. Memory agents are
involved in memory discovery based on a given memory interval or a specific memory
value. In this case, the concept of resource matching is of great importance. Resource
matching determines the degree of compatibility between the requested and available
resources. Allocating resources in nodes with an excessive amount beyond the
requested limit is inefficient because the distributed system has the requested resource
in a distributed form, allowing the allocation of the resource on multiple nodes. This
practice can lead to a degradation in system performance. To mitigate this, a semantic
matching approach can be utilized (Castano, S., Ferrara, A., Montanelli, S., & Racca,
G., 2004, April).

3. File agents: These agents specialize in the discovery and management of file
resources, facilitating efficient access, storage, and manipulation of data files. To
conduct file searches, the agents employ file hashing methods, comparing the hash
of the searched file with the hashes of the files available on the queried node. If the
hashes match, the file is considered found (Selvaraj, C., & Anand, S., 2012).

4. IO agents: IO agents specialize in exploring and utilizing input/output resources,

Fakhraddin Abdullayev

117

enabling effective data input/output operations within the distributed exascale
computing system. These agents handle resource discovery and management,
specifically concerning resources such as storage devices (HDD, SSD, etc.) and
network adapters within the distributed system. By focusing on resource exploration
and utilization, IO agents contribute to optimizing data input and output operations,
enhancing the overall performance of the distributed exascale computing system.

2.2. Behavior-specific Agents
In high-performance computing systems, resource discovery occurs outside the

system (Ding, S., Yuan, J., & Hu, L., 2005, March). In traditional systems, the
computation element initiating the resource search sends queries to its neighboring
nodes, storing information about the resources in its local memory. The resource
search is completed within that computation element if the required resource is
available in those nodes. Suppose that A- is the node initiating the resource discovery
process, 𝐵𝐵 − is the neighboring node of 𝐴𝐴 to which the request is sent, 𝐶𝐶!, 𝐶𝐶", . . . , 𝐶𝐶# −
the neighboring nodes of 𝐵𝐵 to which resource discovery requests can be made, 𝑟𝑟 −
the requested resource. In distributed exascale computing systems, the possible
scenarios related to resource availability during off-system resource search can be
demonstrated as follows:

Node 𝐵𝐵 can provide resources 𝑟𝑟 on its own.
Node 𝐵𝐵 can provide resource 𝑟𝑟 with the assistance of neighboring nodes

𝐶𝐶!, 𝐶𝐶", … , 	𝑎𝑎𝑎𝑎𝑎𝑎	𝐶𝐶#, to which it sends requests for resource discovery.
Node 𝐵𝐵 cannot provide resource 𝑟𝑟, but its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝐶𝐶# can. In

this case, if node 𝐶𝐶$ is not accessible to node 𝐴𝐴, then node 𝐵𝐵 acts as the resource
provider.

Node 𝐵𝐵 cannot provide resource 𝑟𝑟, but its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝑎𝑎𝑎𝑎𝑎𝑎	𝐶𝐶# can.
If node 𝐶𝐶$ is accessible to node 𝐴𝐴, node 𝐶𝐶$ becomes the resource provider.

Both node 𝐵𝐵 and its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝐶𝐶# can provide resource 𝑟𝑟.
Neither node 𝐵𝐵 nor its neighboring nodes can provide the resource.
The first five of the six cases shown above are success cases and allow for resource

provision. We will assign behavior-specific agents for each of these five cases. These
agents are as follows:

Self-Provisioning Agents. These agents only search for the requested resource
among the neighbors of the initiating node. If the resource is not found, a failed
response is returned. For these agents to function properly, the node initiating the
resource discovery process must store a list of its neighbor nodes in its local memory.
This list should also include the timestamp indicating the last time information about
each neighbor node was obtained. This is crucial because distributed exascale
computing systems are dynamic in nature, and nodes can join or leave the system over
time. By maintaining the list of neighbor nodes and their corresponding timestamp, the
resource discovery agents can adapt to the changing network topology and ensure
the accuracy of resource availability information.

Collaborative Provisioning Agents. Distributed systems sometimes encounter
situations where the node initiating the resource discovery can only provide a certain
portion of the requested resource. For example, if 8GB of RAM is requested, node 𝑋𝑋
can only provide 4GB of RAM. In such cases, Collaboration Provisioning agents create
new resource discovery request for the unfulfilled portion of the resource. The
unfulfilled portion of the resource is then searched among the neighbors of the
requested node. During this process, the value of the resource to be searched in
neighbor node 𝐶𝐶% is determined by the following guidelines:

𝑣𝑣&'(% = 𝑉𝑉 − 𝑣𝑣)&*+ − 1 𝑣𝑣)&*$

$∈-!

𝑣𝑣&'(% : Represents the requested value of the resource from node 𝑘𝑘, which is the node
where the resource is being searched.

𝑉𝑉: Denotes the total value of the requested resource.
𝑣𝑣)&*+ : Represents the value of the resource that the current node can provide or

supply.
𝑁𝑁.: Refers to the number of visited nodes by the current node.
𝑣𝑣)&*$: Represents the value of the resource that the 𝑖𝑖-th neighbor node can provide

or supply, where 𝑖𝑖 is a specific neighbor node.
Neighbor-Aided Provisioning Agents. These agents perform resource discovery in

the neighboring nodes of the requested node, which are present in the requested
node's adjacency list but are not directly accessible. In this case, the requested node
is the output node that provides the resources.

Proxy Neighbor-Aided Provisioning Agents. These agents perform resource
discovery in the neighboring nodes of the requested node, accessible from outside the
requested node. In this scenario, unlike Neighbor-Aided Provisioning Agents, the node
where the resource is found acts as the resource-providing node.

Multiple-Provisioning Agents. These agents perform resource discovery in the
requested node and its neighboring nodes. As a result of the resource discovery
process, several nodes and the resources they provide are identified. To limit the
number of neighbor nodes to be visited in this approach, the parameter 𝑐𝑐. (number of
visited nodes) is included in the resource discovery request. The value of this
parameter is incremented for each visited node until it reaches the value of the static
parameter 𝑐𝑐/01 (maximal number of nodes to be visited). If the values of 𝑐𝑐. and 𝑐𝑐/01
are equal, then the resource discovery process is considered complete for the
requested node.

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

118

2.2. Behavior-specific Agents
In high-performance computing systems, resource discovery occurs outside the

system (Ding, S., Yuan, J., & Hu, L., 2005, March). In traditional systems, the
computation element initiating the resource search sends queries to its neighboring
nodes, storing information about the resources in its local memory. The resource
search is completed within that computation element if the required resource is
available in those nodes. Suppose that A- is the node initiating the resource discovery
process, 𝐵𝐵 − is the neighboring node of 𝐴𝐴 to which the request is sent, 𝐶𝐶!, 𝐶𝐶", . . . , 𝐶𝐶# −
the neighboring nodes of 𝐵𝐵 to which resource discovery requests can be made, 𝑟𝑟 −
the requested resource. In distributed exascale computing systems, the possible
scenarios related to resource availability during off-system resource search can be
demonstrated as follows:

Node 𝐵𝐵 can provide resources 𝑟𝑟 on its own.
Node 𝐵𝐵 can provide resource 𝑟𝑟 with the assistance of neighboring nodes

𝐶𝐶!, 𝐶𝐶", … , 	𝑎𝑎𝑎𝑎𝑎𝑎	𝐶𝐶#, to which it sends requests for resource discovery.
Node 𝐵𝐵 cannot provide resource 𝑟𝑟, but its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝐶𝐶# can. In

this case, if node 𝐶𝐶$ is not accessible to node 𝐴𝐴, then node 𝐵𝐵 acts as the resource
provider.

Node 𝐵𝐵 cannot provide resource 𝑟𝑟, but its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝑎𝑎𝑎𝑎𝑎𝑎	𝐶𝐶# can.
If node 𝐶𝐶$ is accessible to node 𝐴𝐴, node 𝐶𝐶$ becomes the resource provider.

Both node 𝐵𝐵 and its neighboring nodes 𝐶𝐶!, 𝐶𝐶", … , 	𝐶𝐶# can provide resource 𝑟𝑟.
Neither node 𝐵𝐵 nor its neighboring nodes can provide the resource.
The first five of the six cases shown above are success cases and allow for resource

provision. We will assign behavior-specific agents for each of these five cases. These
agents are as follows:

Self-Provisioning Agents. These agents only search for the requested resource
among the neighbors of the initiating node. If the resource is not found, a failed
response is returned. For these agents to function properly, the node initiating the
resource discovery process must store a list of its neighbor nodes in its local memory.
This list should also include the timestamp indicating the last time information about
each neighbor node was obtained. This is crucial because distributed exascale
computing systems are dynamic in nature, and nodes can join or leave the system over
time. By maintaining the list of neighbor nodes and their corresponding timestamp, the
resource discovery agents can adapt to the changing network topology and ensure
the accuracy of resource availability information.

Collaborative Provisioning Agents. Distributed systems sometimes encounter
situations where the node initiating the resource discovery can only provide a certain
portion of the requested resource. For example, if 8GB of RAM is requested, node 𝑋𝑋
can only provide 4GB of RAM. In such cases, Collaboration Provisioning agents create
new resource discovery request for the unfulfilled portion of the resource. The
unfulfilled portion of the resource is then searched among the neighbors of the
requested node. During this process, the value of the resource to be searched in
neighbor node 𝐶𝐶% is determined by the following guidelines:

𝑣𝑣&'(% = 𝑉𝑉 − 𝑣𝑣)&*+ − 1 𝑣𝑣)&*$

$∈-!

𝑣𝑣&'(% : Represents the requested value of the resource from node 𝑘𝑘, which is the node
where the resource is being searched.

𝑉𝑉: Denotes the total value of the requested resource.
𝑣𝑣)&*+ : Represents the value of the resource that the current node can provide or

supply.
𝑁𝑁.: Refers to the number of visited nodes by the current node.
𝑣𝑣)&*$: Represents the value of the resource that the 𝑖𝑖-th neighbor node can provide

or supply, where 𝑖𝑖 is a specific neighbor node.
Neighbor-Aided Provisioning Agents. These agents perform resource discovery in

the neighboring nodes of the requested node, which are present in the requested
node's adjacency list but are not directly accessible. In this case, the requested node
is the output node that provides the resources.

Proxy Neighbor-Aided Provisioning Agents. These agents perform resource
discovery in the neighboring nodes of the requested node, accessible from outside the
requested node. In this scenario, unlike Neighbor-Aided Provisioning Agents, the node
where the resource is found acts as the resource-providing node.

Multiple-Provisioning Agents. These agents perform resource discovery in the
requested node and its neighboring nodes. As a result of the resource discovery
process, several nodes and the resources they provide are identified. To limit the
number of neighbor nodes to be visited in this approach, the parameter 𝑐𝑐. (number of
visited nodes) is included in the resource discovery request. The value of this
parameter is incremented for each visited node until it reaches the value of the static
parameter 𝑐𝑐/01 (maximal number of nodes to be visited). If the values of 𝑐𝑐. and 𝑐𝑐/01
are equal, then the resource discovery process is considered complete for the
requested node.

Conclusion
In conclusion, this paper examined a multi-agent-based approach for resource

discovery in distributed exascale computing systems. The agents were categorized
based on two fundamental concepts, allowing each agent to specialize in the search
for specific types of resources. Furthermore, agent types have been categorized to
provide resource provisioning based on the behaviors of agents in neighboring nodes.
This approach thoroughly investigated the challenges associated with each agent
type. The findings of this study contribute to the understanding of resource discovery

Fakhraddin Abdullayev

119

mechanisms in distributed computing systems and provide insights for improving the
efficiency and effectiveness of resource allocation.

References
Adibi, E., & Khaneghah, E. M. (2018). Challenges of resource discovery to support

distributed exascale computing environment. Azerbaijan Journal of High Performance
Computing, 1(2), 168-178.

Adibi, E., & Mousavi Khaneghah, E. (2020). ExaRD: introducing a framework for
empowerment of resource discovery to support distributed exascale computing
systems with high consistency. Cluster Computing, 23, 3349-3369.

Castano, S., Ferrara, A., Montanelli, S., & Racca, G. (2004, April). Matching
techniques for resource discovery in distributed systems using heterogeneous
ontology descriptions. In International Conference on Information Technology: Coding
and Computing, 2004. Proceedings. ITCC 2004. (Vol. 1, pp. 360-366). IEEE.

Dimakopoulos, V. V., & Pitoura, E. (2003, August). A peer-to-peer approach to
resource discovery in multi-agent systems. In International Workshop on Cooperative
Information Agents (pp. 62-77). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ding, S., Yuan, J., & Hu, L. (2005, March). A heuristic algorithm for agent-based
grid resource discovery. In 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service (pp. 222-225). IEEE.

Kambayashi, Y., & Harada, Y. (2007). A resource discovery method based on
multi-agents in P2P systems. In Agent and Multi-Agent Systems: Technologies and
Applications: First KES International Symposium, KES-AMSTA 2007, Wroclaw, Poland,
May 31–June 1, 2007. Proceedings 1 (pp. 364-374). Springer Berlin Heidelberg.

Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E. (2018). The influence of
exascale on resource discovery and defining an indicator. Azerbaijan Journal of High
Performance Computing, 1(1), 3-19.

Raj, P., & Sekhar, C. (2020). Comparative Study on CPU GPU and TPU. Int. Journal
of Computer Science and Information Technology for Education, 5, 31-38.

Selvaraj, C., & Anand, S. (2012). A survey on security issues of reputation
management systems for peer-to-peer networks. Computer science review, 6(4), 145-
160.

Tan, Y., & Zheng, Z. (2009, May). A multi-agent based resource discovery
scheme for p2p systems. In 2009 International Workshop on Intelligent Systems and
Applications (pp. 1-4). IEEE.

Tan, Y., Han, J., & Wu, Y. (2010). A multi-agent based efficient resource discovery
mechanism for grid systems. Journal of Computational Information Systems, 6(11),
3623-3631.

Yamasaki, J., & Kambayashi, Y. (2010, November). Design an Implementation of
Bee Hive in a Mult-agent Based Resource Discovery Method in P2P Systems. In 2010
First International Conference on Networking and Computing (pp. 292-293). IEEE.

Azerbaijan Journal of High Performance Computing, 6 (1), 2023

120

Zarrin, J., Aguiar, R. L., & Barraca, J. P. (2018). Resource discovery for distributed
computing systems: A comprehensive survey. Journal of parallel and distributed
computing, 113, 127-166.

Submitted: 16.02.2023
Accepted: 26.05.2023

Fakhraddin Abdullayev

