
158

Load Balancing in Distributed Exascale
Computing Based on Process Requirements
Shirin Shahrabi1, Faezeh Mollasalehi1, Araz R Aliev2, Ehsan Mousavi
Khaneghah1

1Department of Computer Engineering, Faculty of Engineering, Shahed University, Tehran,
Iran; Sh.Shahrabi@Shahed.ac.ir, Faezeh.Mollasalehi@Shahed.ac.ir, EMousavi@Shahed.
ac.ir;
2Department of General and Applied Mathematics, HPC Advance Research Center,
Azerbaijan State Oil and Industry University, Baku, Azerbaijan; alievaraz@azjhpc.org

*Correspondence: Shirin
Shahrabi,

Department of Computer
Engineering, Faculty of
Engineering, Shahed

University, Tehran, Iran;
Sh.Shahrabi@Shahed.ac.ir

Abstract
In distributed Exascale systems, the occurrence of a dynamic
and interactive nature changes the workload of the system’s
computing elements. Because of this, the load balancer needs
to collect information on the system state. Activating the load
balancer increases the runtime of the scientific application. While
analyzing the impact of the dynamic and interactive nature on the
load balancer functionality, this paper also attempts to provide a
mathematical definition for load balancer based on the concept of
dynamic and interactive nature. This makes it possible to describe
and examine the load balancer functionality by considering
the impacts of the dynamic and interactive nature. As a result,
decisions can be made on the behavior of the load balancer
when a dynamic and interactive nature occurs. According to the
mentioned operational function, this paper has analyzed the load
balancer’s behavior in processes with a dynamic and interactive
nature. The introduced operational function for the load balancer
in this paper enables the management element to separate the
requests of processes with a dynamic and interactive nature and
normal processes that leads to redistribution.

Keywords: distributed exascale computing system, load
balancing, dynamic and interactive nature, runtime.

1. Introduction
One of the most important features of distributed Exascale systems, in

comparison with traditional computing systems, is the concept of dynamic and
interactive nature [1, 2, 3]. The occurrence of a dynamic and interactive nature
in these types of computer systems is due to the lack of precise information on
the nature of the scientific application and the executive structure to run it [4, 5,
6, 7]. To analyze the dynamic and interactive nature of the system and its impact
on system’s functionality, two patterns are usually used: the occurrence of the
event and analyzing its impacts on the system and its constituent elements, or
examining the process of the constituent elements’ functionality and behavior and

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 2, 2018, pp. 158-167
https://doi.org/10.32010/26166127.2018.1.2.158.167

159

investigating that whether they are in line with the dynamic and interactive event or
not. The most important impact and manifestation of the dynamic and interactive
nature in distributed Exascale systems is on the system manager’s functionality
[2, 8, 9, 10]. In addition to being able to analyze and manage the dynamic and
interactive nature, the system manager must also be able to make decisions on the
effects of the dynamic and interactive nature on its own processes [2, 8].

Among the constituent elements of the system manager, the load balancer is one
of the most important elements that is influenced by the occurrence of the dynamic
and interactive nature [11]. One of the most important influences of the dynamic and
interactive event is a change in the workload of systems that form the computing
system [2, 12]. Due to the dynamic and interactive events, the system load can
be changed in a way that the appropriate pattern (or patterns) for controlling the
workload state may not be considered when designing the system [5, 6]. Based
on the computing system’s functionality as well as the scientific applications that
are to be run by the computing system, the mechanisms or patterns used by the
load balancer are normally determined and specified when it is designed [13,
14]. In distributed Exascale systems, due to the dynamic and interactive nature
of computing processes and their answer structure, extracting the information
on the application nature and the computing system functionality is not feasible
[6]. Because of the lack of accurate information on the application nature and the
system’s functionality, in addition to normal runtime for redistribution activities, the
load balancer requires some more time to perform activities related to establishing
an appropriate answer structure to deal with the dynamic and interactive nature.
This increase in the runtime of the load balancer activities will increase the runtime
of the scientific application in the distributed Exascale system, which will violate the
main objective of high performance computing systems (increased efficiency) [15].

To deal with this incident, the load balancer in distributed Exascale computing
systems can use two strategies. In the first strategy, the load balancer does not
influence the process of the dynamic and interactive event and allows it to occur. In
this case, the load balancer manages the system workload by taking into account
the system state after the occurrence of the event. In this method, the load balancer
does not deal with the details of dynamic and interactive events; on the contrary,
it requires to run more activities for redistribution [16]. In mechanisms designed
according to this method, after the occurrence of the event, the load balancer
creates an answer structure proportional to the system’s workload after the event,
and then, redistributes the load. The most important challenge of this approach
is when the system workload follows a pattern that does not fit the mechanism (or
mechanisms) used by the load balancer to redistribute it. This can be due to the
fact that the occurrence of a dynamic and interactive nature has altered the system
workload state and caused it not to be in accordance with the load balancing
mechanism.

The second strategy is the functional and behavioral analysis of computing
processes in distributed Exascale systems. In this method, the load balancer
makes decisions on the computing processes, where the dynamic and interactive
event is likely to happen, through examining the functional and behavioral trend

Azerbaijan Journal of High Performance Computing, 1(2), 2018

160

of the computing processes as well as considering the triggers of dynamic and
interactive behaviors.

Based on the analysis of the impact of the dynamic and interactive nature on
the load balancer functionality, this paper introduces the function of load balancer
functionality by taking into account the dynamic and interactive nature. It can be
used as a benchmark for analyzing process requests. According to this function,
it is possible to distinguish between the requests of processes with dynamic and
interactive nature and normal requests that lead to redistribution. As a result, the
load balancer can manage the process requests according to their nature. Thanks
to this approach, the load balancer is able to analyze the process behavior and
make decisions on the mechanisms used to redistribute the load based on the
process behaviors.

2. Related works
Scientific applications have to be able to describe the activities of natural

phenomena. They also need to be able to predict what will happen [5, 17]. Such
computing applications require HPC systems, whose management element is
able to support their requirements [5, 18]. The management element in distributed
Exascale systems is able to execute scientific applications with higher complexities
and face unpredictable requests [2, 8, 9, 19].

The purpose of using traditional computing systems was to examine a natural
event for specific values in the shortest possible time. However, if we look at the
nature of scientific and engineering applications that need Exascale systems, we
will realize that the purpose of running these applications is to discover the rules
governing a natural event [5]. One of the available solutions for HPC systems to
support dynamic and interactive applications is to increase system scalability
during runtime [20]. Paper [5] addresses the issue that how multiscale computing
systems can optimally be used in current Petascale systems as well as HPC
Exascale systems through increasing their capabilities.

DEEP project has developed a supercomputer architecture with a suitable
software package and a series of massive optimization simulation applications.
DEEP aims at providing scalability via using millions of processing cores to
implement new scientific applications with Exascale-level computing performance
[7, 21].

Exascale systems face different challenges such as Power, Extreme
Concurrency, Limited Memory, Data Locality, and Resilience. In addition, as in
HPC systems, where the resource management unit, especially the load balancing
unit, plays a major role in the efficiency of these systems, it is also true for Exascale
distributed systems and a proper load balancing mechanism is needed for effective
implementation of the applications [22, 23].

In general, three main factors of load imbalance, sharing resources, and
synchronization reduce the efficiency of parallel computations [24]. In [24], a
framework is proposed for Exascale Multicore systems which takes a step towards
solving these problems by presenting an optimal real-time method. Inspired by
the theory of complex social networks, [24] suggests a new method for modeling

Shirin Shahrabi, et al.

161

the dynamic execution of an application is by constructing a dynamic application
dependency graph.

In recent years, a large number of dynamic load balancing algorithms have been
proposed [25, 26, 27]. These load balances use the migration of a work and its
related data over the lifetime of the work [28]. Dynamic load balancing algorithms
are divided into two categories: suitable to be uses in distributed Exascale systems
or unsuitable. The majority of the proposed algorithms belong to the first category.

Considering the heterogeneity of the computing resources as well as the lag of
communication link between the resources, a dynamic load balancing algorithm
has been presented in [29]. This algorithm considers the workload migration as an
important factor in calculating the load balancing cost. In [2], a dynamic distributed
load balancing mechanism for Exascale computing systems is proposed. The
proposed method covers the dynamic behavior of new issues. To estimate the
overload of computing resources, this mechanism utilizes many parameters such
as load migration and communication lag.

In [8], a resilient dashboard in the environment of load balancing algorithms
is proposed to manage the load balancing process in real time. In this method,
system’s flexibility has been improved in order to adapt it to dynamic variables.

3. What Does Dynamic and Interactive Mean in Load Balancing?
The load balancer operates based on two spaces of resource attributes and

process requirements [30, 31]. In its most general case, it must be able to implement
equation 1 to perform its activities.

As seen in equation 1, the load balancer must be able to allocate the resources in
the computing system to computing processes in such a way that: a) all computing
resources in the system are at their maximum operating levels; b) the processes’
time requirements are not violated and there is not a process that cannot be
answered at the acceptable time due to being in the request queue [30, 31].

In distributed Exascale systems, both resource and process spaces can be
changed over time [5, 10]. If the load balancer in a distributed Exascale system
is operating based on the second strategy, based on a set of schemas, it should
be able to make decisions on whether the occurrence of one of the three states
of process creation, communication, and interaction will lead to a dynamic and
interactive nature [10]. In load balancer’s view, this means defining a set of
indicators for analyzing the procedures of process activities and identifying
processes that lead to dynamic and interactive occurrences, as well as analyzing
the impacts of dynamic and interactive events on the system’s workload state.

Azerbaijan Journal of High Performance Computing, 1(2), 2018

(1)

162

Since the system under study is a distributed Exascale system, the load balancer is
implemented independently in each computing element, and it attempts to manage
the processes in the local computing element [20].

If the St represents local and global processes at moment t in the local computing
element, then the load balancer functionality can be described and formulated in
the form of equation 2.

Load Balancing::<<St,Processstate,Resourcestate>,PG,RH,IK,C,O,R>

Equation 2 tends to functionally describe the load balancer through studying
the process behaviors and functionalities in distributed Exascale systems. This
description would define a finite field on three spaces of <St,Processstate,Resourcestate>
by considering 5 characteristics for the process behavior and functionality and an
R activity as well.

In equation 2, Processstate represents the state of the global computing processes
relative to the local computing element. This space indicates that what each global
computing process requests from the local computing element. These requests
can be in the form of a linked list. Given the possibility of defining the global activity,
Processstate space can be defined in terms of the concept of past performance and
previous behaviors. If the distributed Exascale computing system is designed in a
way that the Processstate is created for each computing process from the moment
the process is formed, this set will be initialized during the global activity which is
being run on the system’s computing elements and the process is part of it [21].
To initialize it, each process request of each computing element is stored in the
form of a linked data structure. This data structure contains a section for storing the
local system’s state when answering the process, and another section for storing
the process request from the local computing element.

In equation 2, Resourcestate represents the state of resources in the local system
which are answering the requests of global computing processes. This space
implies that every resource of the local computing element is capable of answering
which requests. In order to be used to analyze the behavior and functionality of
the resource and the process, Resourcestate space stores the request information
as well as the pattern of answering the request in an array data structure. When a
request is sent to the resource, the process owning the request stores the request
information, including the request type, the process owning the request, the time
and pattern of the creating the request, as well as the pattern used by the resource
to answer the request [21]. The resource pattern for answering the request is
a procedure that it takes to answer the request. Resource interactions with the
process having the request, the time pattern allocated to the request, the constraints
governing answering the request and the impact of answering the request, and
most importantly, its influence on the resource state about the resource pattern
for answering the request, are saved in the data structure of resource state by the
process owing the resource.

In equation 2, PG,RH are the generating spaces of the processes and resources’
behavior available in the local computing element. For each process and resource

Shirin Shahrabi, et al.

(2)

163

in the local computing element, a set of indices can be defined so that the process
or resource state can be described based on them. Any changes in these indices
will result in defining a new functionality or behavior for the process or resource.
As e result, a reference set can be considered for all the possible functionalities
and behaviors of the resource (or the process). RH is a generating function which
generates all the functionalities and behaviors of the resource reference set. PG is
a generating function which generates all the functionalities and behaviors of the
process reference set.

In equation 2, IK represents the generating space of the processes’ dynamic and
interactive nature. A set of states, which is a sub-set of the process functionalities
and behaviors, can be considered for each process, and in case these states take
place, dynamic and interactive nature will occur in the process. As stated in papers
[10, 22], three states can be regarded for the dynamic and interactive nature.

In equation 2, C represents the influences that IK states have on the states of
PG,RH. For each element on IK space, a mapping function can be defined which
represents the impact of IK space element on each element of PG,RH spaces. The
defined mapping function may influence some of the elements of PG,RH spaces,
or may not have any influences on them. Space C includes a set of the mentioned
mappings.

In equation 2, space O is made up of two parts. The first part is for defining
process descriptor indices, and the second one is for defining resource descriptor
indices.

In this equation, R is the space for answering the process requests. Based
on the mechanisms for process migration, resource discovery, changing the
implementation priorities, and changing the resource functionality, the load
balancer answers the process request depending on whether it is normal or
dynamic and interactive. R describes the reaction activity in equation 3, which has
been explained in section 1.2. Based on the schema extracted from the process
behavior, this space answers the process request.

Transferring the processes that have caused the dynamic and interactive
nature and disturbed the acceptable state of the load balancer, or changing the
resource functionality, are two tools of answering the states which disturb the load
balancer state [22]. These two strategies, and that which is used for what state, are
determined by R.

4. Behavioral ExaLB
In distributed Exascale computing systems, both elements of process and

resource can change the computing element state [1, 10, 32]. Changing the
computing elements’ state and their generating functions, or changing the
resources’ state and their generating functions will change the descriptor function
of the computing element state. The change in the descriptor function will also
change the function of the load balancer functionality.

To analyze the computing element’s behavior and functionality, the analysis of
the behavior and functionality of each of the two elements of the resource and
process can be used. In this paper, the focus of the analysis is on the process. In

Azerbaijan Journal of High Performance Computing, 1(2), 2018

164

distributed Exascale computing systems, the process has two types of behavior
and functionality in the load balancer view.

The first type is normal behaviors, which are the changes in requirements and
descriptor spaces of the process. Due to these behaviors, the load balancer answers
the process requirements through the mechanisms of process migration, resource
discovery, or changing the implementation priority [33, 34]. These requirements
are taken into account when designing the answer structure. The mechanisms and
patterns that are used by the load balancer, match these requirements, and when
they occur, the load balancer has the mechanisms and patterns to manage them
[34, 35].

The second type of process behaviors are dynamic and interactive [1, 2, 3]. They
are not taken into account when designing the answer structure [5]. Their nature
is such that decisions cannot be made on the pattern needed to deal with them
until they occur. In equation 2, the generating space of dynamic and interactive
behaviors, in load balancer’s view, is IK. As noted in [10], dynamic and interactive
behaviors can raise from the process formation, communication, and interaction.
The load balancer creates a graph which corresponds to the process request
nature. The vertices of this graph are one of the five states of normal, formation,
communication, not requiring the load balancer, or interaction. Each edge of this
graph represents an event which has altered the process request nature in load
balancer’s view. iG graph can be shown in the form of iG=(S,E), where S is the state
based on which the process has activated or deactivated the load balancer, and E
is an event which changes the process state and activates or deactivates the load
balancer.

For every change in the state of the request nature graph relative to the load
balancing element, the load balancer stores the information of the edge and the
vertex in Y data structure. The information that involves transferring the process state
into one of three states of formation, communication, and interaction is considered
and the dynamic and interactive behavior trigger. For iG graph, the load balancer
can define IG matrix. IG matrix is defined on the space from Cartesian product
of two generating spaces of RH and PG. The linear mapping operators defined on
space C can be defined on IG matrix. According to the definition of space C, each
mapping in space C maps each IK element into each of two generating spaces of
RH and PG based on equation 3.

As seen in equation 3, each mapping in space C creates a linear transformation.
Based on this linear transformation, each element of IK space influences each
element of RH and PG spaces and causes it to either become a new element or
remain the same as before. In load balancer’s view, this linear mapping makes
sense when the dynamic and interactive behavior influences every process
behavior or resource behavior, or the process or resource behavior in influenced
by the dynamic and interactive behavior. If the dynamic and interactive behavior
changes the process or resource behavior, the load balancer will seek to investigate
whether the dynamic and interactive behavior is a stimulus or is itself the result of

Shirin Shahrabi, et al.

(3)

165

another behavior. To this end, if f is the defined stimulus on a linear transformation
on space C, and f (c) = 0, then the transformation will be a dynamic and interactive
behavior stimulus. f(c) =0 means that the dynamic and interactive behavior stimulus
aliquots behavior c.

5. Conclusion
In this paper, the dynamic and interactive nature and its impact on the load

balancer functionality were discussed. Due to the occurrence of a dynamic and
interactive nature in distributed Exascale systems, in addition to redistributing the
load due to the occurrence of normal requests, the load balancer needs to be able
to manage load balancing that results form dynamic and interactive requests as
well. The nature of dynamic and interactive requests is different from the nature of
normal requests. As a result, the mechanisms used to manage redistributions from
dynamic and interactive requests will also vary. The nature of the dynamic and
interactive requests is such that they transform the system and the load balancing
state into an undefined state for the load balancer.

Consequently, the influences of the dynamic and interactive nature on the
load balancer functionality need to be taken into account. Given the dynamic and
interactive nature, the concept of global activity as well as the elements affecting
the space defining the load balancer, this paper proposed the load balancer’s
operational function. This function describes the load balancer’s functionality in
both traditional computing systems and distributed Exascale systems. Redefining
the function load balancer’s functionality enables the load balancer to analyze the
generating space of dynamic and interactive behaviors due to considering IK space.
This analysis enables the load balancer to, based on the presented model in this
paper, make decisions on whether the process behavior will result in a dynamic and
interactive nature or not. This will allow the load balancer to manage redistribution
in distributed Exascale systems in accordance with the process behavior.

Reference
[1] Mousavi Khaneghah, E., Noorabad Ghahroodi, R., & Reyhani ShowkatAbad, A.

(2018). A mathematical multi-dimensional mechanism to improve process migration
efficiency in peer-to-peer computing environments. Cogent Engineering, 5(1), 1458434.

[2] Mirtaheri, S. L., & Grandinetti, L. (2017). Dynamic load balancing in distributed
exascale computing systems. Cluster Computing, 20(4), 3677-3689.

[3] Barak, A., Drezner, Z., Levy, E., Lieber, M., & Shiloh, A. (2015). Resilient
gossip algorithms for collecting online management information in exascale
clusters. Concurrency and Computation: Practice and Experience, 27(17), 4797-4818.

[4] Reyle, C., Richard, J., Cambrésy, L., Deleuil, M., Pécontal, E., & Tresse, L.
(2016). Perspectives in numerical astrophysics. In the Annual meeting of the French
Society of Astronomy and Astrophysics, SF2A-2016.

[5] Alowayyed, S., Groen, D., Coveney, P. V., & Hoekstra, A. G. (2017). Multiscale
computing in the exascale era. Journal of Computational Science, 22, 15-25.

[6] Innocenti, M. E., Johnson, A., Markidis, S., Amaya, J., Deca, J., Olshevsky, V., &
Lapenta, G. (2017). Progress towards physics-based space weather forecasting with

Azerbaijan Journal of High Performance Computing, 1(2), 2018

166

exascale computing. Advances in Engineering Software, 111, 3-17.
[7] SEVENTH FRAMEWORK PROGRAMME Research Infrastructures. (n.d.).

Retrieved from https://www.deep-projects.eu/images/materials/DEEP_ER_D1.1.pdf
[8] Mirtaheri, S. L., Fatemi, S. A., & Grandinetti, L. (2017). Adaptive Load

Balancing Dashboard in Dynamic Distributed Systems. Supercomputing Frontiers and
Innovations, 4(4), 34-49.

[9] Wang, K., Qiao, K., Sadooghi, I., Zhou, X., Li, T., Lang, M., & Raicu, I. (2016).
Load‐balanced and locality‐aware scheduling for data‐intensive workloads at extreme
scales. Concurrency and Computation: Practice and Experience, 28(1), 70-94.

[10] Khaneghah, E. M., ShowkatAbad, A. R., & Ghahroodi, R. N. (2018, February).
Challenges of Process Migration to Support Distributed Exascale Computing
Environment. In Proceedings of the 2018 7th International Conference on Software and
Computer Applications (pp. 20-24). ACM.

[11] Amelina, N., Fradkov, A., Jiang, Y., & Vergados, D. J. (2015). Approximate
consensus in stochastic networks with application to load balancing. IEEE Transactions
on Information Theory, 61(4), 1739-1752.

[12] Klimentov, A., Buncic, P., De, K., Jha, S., Maeno, T., Mount, R., ... & Porter, R. J.
(2015). Next generation workload management system for big data on heterogeneous
distributed computing. In Journal of Physics: Conference Series (Vol. 608, No. 1, p.
012040). IOP Publishing.

[13] Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah,
N., ... & Kolodziej, J. (2013). A survey on resource allocation in high performance
distributed computing systems. Parallel Computing, 39(11), 709-736.

[14] Yang, C. T., Liu, J. C., Hsu, C. H., & Chou, W. L. (2014). On improvement
of cloud virtual machine availability with virtualization fault tolerance mechanism. The
Journal of Supercomputing, 69(3), 1103-1122.

[15] Kołodziej, J., Khan, S. U., Wang, L., Kisiel-Dorohinicki, M., Madani, S.
A., Niewiadomska-Szynkiewicz, E., ... & Xu, C. Z. (2014). Security, energy, and
performance-aware resource allocation mechanisms for computational grids. Future
Generation Computer Systems, 31, 77-92.

[16] Skinner, B. F. (1953). Science and human behavior (No. 92904). Simon and
Schuster.

[17] Fiore, S., Bakhouya, M., & Smari, W. W. (2018). On the road to exascale: Advances
in High Performance Computing and Simulations—An overview and editorial. Future
Generation Computer Systems, 82, 450-458. doi:10.1016/j.future.2018.01.034

[18] Straatsma, T. P., Antypas, K. B., & Williams, T. J. (2017). Exascale Scientific
Applications: Scalability and Performance Portability. Chapman and Hall/CRC.

[19] Ghomi, E. J., Rahmani, A. M., & Qader, N. N. (2017). Load-balancing algorithms
in cloud computing: a survey. Journal of Network and Computer Applications, 88, 50-
71.

[20] Abraham, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E. B., Kondov, I., ...
& Streit, A. (2015, September). Preparing HPC applications for exascale: Challenges
and recommendations. In Network-Based Information Systems (NBiS), 2015 18th
International Conference on (pp. 401-406). IEEE.

[21] Eicker, N., Lippert, T., Moschny, T., & Suarez, E. (2013, October). The deep

Shirin Shahrabi, et al.

167

project-pursuing cluster-computing in the many-core era. In 2013 42nd International
Conference on Parallel Processing (ICPP) (pp. 885-892). IEEE.

[22] Singh, A., Juneja, D., & Malhotra, M. (2015). Autonomous agent based load
balancing algorithm in cloud computing. Procedia Computer Science, 45, 832-841.

[23] Milani, A. S., & Navimipour, N. J. (2016). Load balancing mechanisms and
techniques in the cloud environments: Systematic literature review and future
trends. Journal of Network and Computer Applications, 71, 86-98.

[24] Xiao, Y., Xue, Y., Nazarian, S., & Bogdan, P. (2017, November). A load balancing
inspired optimization framework for exascale multicore systems: a complex networks
approach. In Proceedings of the 36th International Conference on Computer-Aided
Design (pp. 217-224). IEEE Press.

[25] Márquez, C., César, E., & Sorribes, J. (2015, August). Graph-based automatic
dynamic load balancing for HPC agent-based simulations. In European Conference on
Parallel Processing (pp. 405-416). Springer, Cham.

[26] Marathe, A., Bailey, P. E., Lowenthal, D. K., Rountree, B., Schulz, M., & de
Supinski, B. R. (2015, July). A run-time system for power-constrained HPC applications.
In International conference on high performance computing (pp. 394-408). Springer,
Cham.

[27] Panchal, B., Smaranika, P. (2018) An Efficient Dynamic Load Balancing
Algorithm Using Machine Learning Technique in Cloud Environment. International
Journal of Scientific Research in Science, Engineering and Technology, 4(4), 1184-
1186.

[28] Jeannot, E., Mercier, G., & Tessier, F. (2016, November). Topology and
affinity aware hierarchical and distributed load-balancing in Charm++. In International
Workshop on Communication Optimizations in HPC (COMHPC) (pp. 63-72). IEEE.

[29] Soltani, N., & Sharifi, M. (2014). A Load Balancing Algorithm Based on Replication
and Movement af Data Items for Dynamic Structured P2P Systems. International Journal
of Peer to Peer Networks, 5(3), 15-32. doi:10.5121/ijp2p.2014.5302

[30] Sreenivas, V., Prathap, M., & Kemal, M. (2014, February). Load balancing
techniques: Major challenge in Cloud Computing-a systematic review. In 2014
International Conference on Electronics and Communication Systems (ICECS) (pp.
1-6). IEEE.

[31] Rahman, M., Iqbal, S., & Gao, J. (2014, April). Load balancer as a service
in cloud computing. In 2014 IEEE 8th international symposium on service oriented
system engineering (SOSE) (pp. 204-211). IEEE.

[32] Singh, P., Baaga, P., & Gupta, S. (2016). Assorted Load Balancing Algorithms
in Cloud Computing: A Survey. International Journal of Computer Applications, 143(7).

[33] Navimipour, N. J., & Milani, F. S. (2015). A comprehensive study of the
resource discovery techniques in peer-to-peer networks. Peer-to-Peer Networking and
Applications, 8(3), 474-492.

[34] Rathore, N., & Chana, I. (2014). Load balancing and job migration techniques
in grid: a survey of recent trends. Wireless personal communications, 79(3), 2089-
2125.

Submitted 27.07.2018
Accepted 16.10.2018

Azerbaijan Journal of High Performance Computing, 1(2), 2018

