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Abstract
In distributed Exascale systems, the occurrence of a dynamic 
and interactive nature changes the workload of the system’s 
computing elements. Because of this, the load balancer needs 
to collect information on the system state. Activating the load 
balancer increases the runtime of the scientific application. While 
analyzing the impact of the dynamic and interactive nature on the 
load balancer functionality, this paper also attempts to provide a 
mathematical definition for load balancer based on the concept of 
dynamic and interactive nature. This makes it possible to describe 
and examine the load balancer functionality by considering 
the impacts of the dynamic and interactive nature. As a result, 
decisions can be made on the behavior of the load balancer 
when a dynamic and interactive nature occurs. According to the 
mentioned operational function, this paper has analyzed the load 
balancer’s behavior in processes with a dynamic and interactive 
nature. The introduced operational function for the load balancer 
in this paper enables the management element to separate the 
requests of processes with a dynamic and interactive nature and 
normal processes that leads to redistribution.

Keywords: distributed exascale computing system, load 
balancing, dynamic and interactive nature, runtime.

1. Introduction
One of the most important features of distributed Exascale systems, in 

comparison with traditional computing systems, is the concept of dynamic and 
interactive nature [1, 2, 3]. The occurrence of a dynamic and interactive nature 
in these types of computer systems is due to the lack of precise information on 
the nature of the scientific application and the executive structure to run it [4, 5, 
6, 7]. To analyze the dynamic and interactive nature of the system and its impact 
on system’s functionality, two patterns are usually used: the occurrence of the 
event and analyzing its impacts on the system and its constituent elements, or 
examining the process of the constituent elements’ functionality and behavior and 
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investigating that whether they are in line with the dynamic and interactive event or 
not. The most important impact and manifestation of the dynamic and interactive 
nature in distributed Exascale systems is on the system manager’s functionality 
[2, 8, 9, 10]. In addition to being able to analyze and manage the dynamic and 
interactive nature, the system manager must also be able to make decisions on the 
effects of the dynamic and interactive nature on its own processes [2, 8].

Among the constituent elements of the system manager, the load balancer is one 
of the most important elements that is influenced by the occurrence of the dynamic 
and interactive nature [11]. One of the most important influences of the dynamic and 
interactive event is a change in the workload of systems that form the computing 
system [2, 12]. Due to the dynamic and interactive events, the system load can 
be changed in a way that the appropriate pattern (or patterns) for controlling the 
workload state may not be considered when designing the system [5, 6]. Based 
on the computing system’s functionality as well as the scientific applications that 
are to be run by the computing system, the mechanisms or patterns used by the 
load balancer are normally determined and specified when it is designed [13, 
14]. In distributed Exascale systems, due to the dynamic and interactive nature 
of computing processes and their answer structure, extracting the information 
on the application nature and the computing system functionality is not feasible 
[6]. Because of the lack of accurate information on the application nature and the 
system’s functionality, in addition to normal runtime for redistribution activities, the 
load balancer requires some more time to perform activities related to establishing 
an appropriate answer structure to deal with the dynamic and interactive nature. 
This increase in the runtime of the load balancer activities will increase the runtime 
of the scientific application in the distributed Exascale system, which will violate the 
main objective of high performance computing systems (increased efficiency) [15]. 

To deal with this incident, the load balancer in distributed Exascale computing 
systems can use two strategies. In the first strategy, the load balancer does not 
influence the process of the dynamic and interactive event and allows it to occur. In 
this case, the load balancer manages the system workload by taking into account 
the system state after the occurrence of the event. In this method, the load balancer 
does not deal with the details of dynamic and interactive events; on the contrary, 
it requires to run more activities for redistribution [16]. In mechanisms designed 
according to this method, after the occurrence of the event, the load balancer 
creates an answer structure proportional to the system’s workload after the event, 
and then, redistributes the load. The most important challenge of this approach 
is when the system workload follows a pattern that does not fit the mechanism (or 
mechanisms) used by the load balancer to redistribute it. This can be due to the 
fact that the occurrence of a dynamic and interactive nature has altered the system 
workload state and caused it not to be in accordance with the load balancing 
mechanism. 

The second strategy is the functional and behavioral analysis of computing 
processes in distributed Exascale systems. In this method, the load balancer 
makes decisions on the computing processes, where the dynamic and interactive 
event is likely to happen, through examining the functional and behavioral trend 
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of the computing processes as well as considering the triggers of dynamic and 
interactive behaviors. 

Based on the analysis of the impact of the dynamic and interactive nature on 
the load balancer functionality, this paper introduces the function of load balancer 
functionality by taking into account the dynamic and interactive nature. It can be 
used as a benchmark for analyzing process requests. According to this function, 
it is possible to distinguish between the requests of processes with dynamic and 
interactive nature and normal requests that lead to redistribution. As a result, the 
load balancer can manage the process requests according to their nature. Thanks 
to this approach, the load balancer is able to analyze the process behavior and 
make decisions on the mechanisms used to redistribute the load based on the 
process behaviors. 

2. Related works
Scientific applications have to be able to describe the activities of natural 

phenomena. They also need to be able to predict what will happen [5, 17]. Such 
computing applications require HPC systems, whose management element is 
able to support their requirements [5, 18]. The management element in distributed 
Exascale systems is able to execute scientific applications with higher complexities 
and face unpredictable requests [2, 8, 9, 19]. 

The purpose of using traditional computing systems was to examine a natural 
event for specific values in the shortest possible time. However, if we look at the 
nature of scientific and engineering applications that need Exascale systems, we 
will realize that the purpose of running these applications is to discover the rules 
governing a natural event [5]. One of the available solutions for HPC systems to 
support dynamic and interactive applications is to increase system scalability 
during runtime [20]. Paper [5] addresses the issue that how multiscale computing 
systems can optimally be used in current Petascale systems as well as HPC 
Exascale systems through increasing their capabilities. 

DEEP project has developed a supercomputer architecture with a suitable 
software package and a series of massive optimization simulation applications. 
DEEP aims at providing scalability via using millions of processing cores to 
implement new scientific applications with Exascale-level computing performance 
[7, 21]. 

Exascale systems face different challenges such as Power, Extreme 
Concurrency, Limited Memory, Data Locality, and Resilience. In addition, as in 
HPC systems, where the resource management unit, especially the load balancing 
unit, plays a major role in the efficiency of these systems, it is also true for Exascale 
distributed systems and a proper load balancing mechanism is needed for effective 
implementation of the applications [22, 23].

In general, three main factors of load imbalance, sharing resources, and 
synchronization reduce the efficiency of parallel computations [24]. In [24], a 
framework is proposed for Exascale Multicore systems which takes a step towards 
solving these problems by presenting an optimal real-time method. Inspired by 
the theory of complex social networks, [24] suggests a new method for modeling 
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the dynamic execution of an application is by constructing a dynamic application 
dependency graph. 

In recent years, a large number of dynamic load balancing algorithms have been 
proposed [25, 26, 27]. These load balances use the migration of a work and its 
related data over the lifetime of the work [28]. Dynamic load balancing algorithms 
are divided into two categories: suitable to be uses in distributed Exascale systems 
or unsuitable. The majority of the proposed algorithms belong to the first category. 

Considering the heterogeneity of the computing resources as well as the lag of 
communication link between the resources, a dynamic load balancing algorithm 
has been presented in [29]. This algorithm considers the workload migration as an 
important factor in calculating the load balancing cost. In [2], a dynamic distributed 
load balancing mechanism for Exascale computing systems is proposed. The 
proposed method covers the dynamic behavior of new issues. To estimate the 
overload of computing resources, this mechanism utilizes many parameters such 
as load migration and communication lag.  

In [8], a resilient dashboard in the environment of load balancing algorithms 
is proposed to manage the load balancing process in real time. In this method, 
system’s flexibility has been improved in order to adapt it to dynamic variables. 

3. What Does Dynamic and Interactive Mean in Load Balancing?
The load balancer operates based on two spaces of resource attributes and 

process requirements [30, 31]. In its most general case, it must be able to implement 
equation 1 to perform its activities.

As seen in equation 1, the load balancer must be able to allocate the resources in 
the computing system to computing processes in such a way that: a) all computing 
resources in the system are at their maximum operating levels; b) the processes’ 
time requirements are not violated and there is not a process that cannot be 
answered at the acceptable time due to being in the request queue [30, 31].

In distributed Exascale systems, both resource and process spaces can be 
changed over time [5, 10]. If the load balancer in a distributed Exascale system 
is operating based on the second strategy, based on a set of schemas, it should 
be able to make decisions on whether the occurrence of one of the three states 
of process creation, communication, and interaction will lead to a dynamic and 
interactive nature [10]. In load balancer’s view, this means defining a set of 
indicators for analyzing the procedures of process activities and identifying 
processes that lead to dynamic and interactive occurrences, as well as analyzing 
the impacts of dynamic and interactive events on the system’s workload state. 
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Since the system under study is a distributed Exascale system, the load balancer is 
implemented independently in each computing element, and it attempts to manage 
the processes in the local computing element [20].

If the St represents local and global processes at moment t in the local computing 
element, then the load balancer functionality can be described and formulated in 
the form of equation 2.

Load Balancing::<<St,Processstate,Resourcestate>,PG,RH,IK,C,O,R>

Equation 2 tends to functionally describe the load balancer through studying 
the process behaviors and functionalities in distributed Exascale systems. This 
description would define a finite field on three spaces of <St,Processstate,Resourcestate> 
by considering 5 characteristics for the process behavior and functionality and an 
R activity as well. 

In equation 2, Processstate  represents the state of the global computing processes 
relative to the local computing element. This space indicates that what each global 
computing process requests from the local computing element. These requests 
can be in the form of a linked list. Given the possibility of defining the global activity, 
Processstate  space can be defined in terms of the concept of past performance and 
previous behaviors. If the distributed Exascale computing system is designed in a 
way that the Processstate is created for each computing process from the moment 
the process is formed, this set will be initialized during the global activity which is 
being run on the system’s computing elements and the process is part of it [21]. 
To initialize it, each process request of each computing element is stored in the 
form of a linked data structure. This data structure contains a section for storing the 
local system’s state when answering the process, and another section for storing 
the process request from the local computing element. 

In equation 2, Resourcestate represents the state of resources in the local system 
which are answering the requests of global computing processes. This space 
implies that every resource of the local computing element is capable of answering 
which requests. In order to be used to analyze the behavior and functionality of 
the resource and the process, Resourcestate space stores the request information 
as well as the pattern of answering the request in an array data structure. When a 
request is sent to the resource, the process owning the request stores the request 
information, including the request type, the process owning the request, the time 
and pattern of the creating the request, as well as the pattern used by the resource 
to answer the request [21]. The resource pattern for answering the request is 
a procedure that it takes to answer the request. Resource interactions with the 
process having the request, the time pattern allocated to the request, the constraints 
governing answering the request and the impact of answering the request, and 
most importantly, its influence on the resource state about the resource pattern 
for answering the request, are saved in the data structure of resource state by the 
process owing the resource. 

In equation 2, PG,RH are the generating spaces of the processes and resources’ 
behavior available in the local computing element. For each process and resource 
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in the local computing element, a set of indices can be defined so that the process 
or resource state can be described based on them. Any changes in these indices 
will result in defining a new functionality or behavior for the process or resource. 
As e result, a reference set can be considered for all the possible functionalities 
and behaviors of the resource (or the process). RH is a generating function which 
generates all the functionalities and behaviors of the resource reference set. PG is 
a generating function which generates all the functionalities and behaviors of the 
process reference set. 

In  equation  2, IK represents the generating space of the processes’ dynamic and 
interactive nature. A set of states, which is a sub-set of the process functionalities 
and behaviors, can be considered for each process, and in case these states take 
place, dynamic and interactive nature will occur in the process. As stated in papers 
[10, 22], three states can be regarded for the dynamic and interactive nature.

In equation 2, C represents the influences that IK states have on the states of 
PG,RH. For each element on IK space, a mapping function can be defined which 
represents the impact of IK space element on each element of PG,RH spaces. The 
defined mapping function may influence some of the elements of PG,RH spaces, 
or may not have any influences on them. Space C includes a set of the mentioned 
mappings.

In equation 2, space O is made up of two parts. The first part is for defining 
process descriptor indices, and the second one is for defining resource descriptor 
indices. 

In this equation, R is the space for answering the process requests. Based 
on the mechanisms for process migration, resource discovery, changing the 
implementation priorities, and changing the resource functionality, the load 
balancer answers the process request depending on whether it is normal or 
dynamic and interactive. R describes the reaction activity in equation 3, which has 
been explained in section 1.2. Based on the schema extracted from the process 
behavior, this space answers the process request. 

Transferring the processes that have caused the dynamic and interactive 
nature and disturbed the acceptable state of the load balancer, or changing the 
resource functionality, are two tools of answering the states which disturb the load 
balancer state [22]. These two strategies, and that which is used for what state, are 
determined by R.

4. Behavioral ExaLB
In distributed Exascale computing systems, both elements of process and 

resource can change the computing element state [1, 10, 32]. Changing the 
computing elements’ state and their generating functions, or changing the 
resources’ state and their generating functions will change the descriptor function 
of the computing element state. The change in the descriptor function will also 
change the function of the load balancer functionality. 

To analyze the computing element’s behavior and functionality, the analysis of 
the behavior and functionality of each of the two elements of the resource and 
process can be used. In this paper, the focus of the analysis is on the process. In 
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distributed Exascale computing systems, the process has two types of behavior 
and functionality in the load balancer view. 

The first type is normal behaviors, which are the changes in requirements and 
descriptor spaces of the process.  Due to these behaviors, the load balancer answers 
the process requirements through the mechanisms of process migration, resource 
discovery, or changing the implementation priority [33, 34]. These requirements 
are taken into account when designing the answer structure. The mechanisms and 
patterns that are used by the load balancer, match these requirements, and when 
they occur, the load balancer has the mechanisms and patterns to manage them 
[34, 35]. 

The second type of process behaviors are dynamic and interactive [1, 2, 3]. They 
are not taken into account when designing the answer structure [5]. Their nature 
is such that decisions cannot be made on the pattern needed to deal with them 
until they occur. In equation 2, the generating space of dynamic and interactive 
behaviors, in load balancer’s view, is IK. As noted in [10], dynamic and interactive 
behaviors can raise from the process formation, communication, and interaction. 
The load balancer creates a graph which corresponds to the process request 
nature. The vertices of this graph are one of the five states of normal, formation, 
communication, not requiring the load balancer, or interaction. Each edge of this 
graph represents an event which has altered the process request nature in load 
balancer’s view. iG graph can be shown in the form of  iG=(S,E), where S is the state 
based on which the process has activated or deactivated the load balancer, and E 
is an event which changes the process state and activates or deactivates the load 
balancer. 

For every change in the state of the request nature graph relative to the load 
balancing element, the load balancer stores the information of the edge and the 
vertex in Y data structure. The information that involves transferring the process state 
into one of three states of formation, communication, and interaction is considered 
and the dynamic and interactive behavior trigger. For iG graph, the load balancer 
can define IG matrix. IG matrix is defined on the space from Cartesian product 
of two generating spaces of RH and PG. The linear mapping operators defined on 
space C can be defined on IG matrix. According to the definition of space C, each 
mapping in space C maps each IK  element into each of two generating spaces of 
RH and PG based on equation 3. 

As seen in equation 3, each mapping in space C creates a linear transformation. 
Based on this linear transformation, each element of IK space influences each 
element of RH and PG spaces and causes it to either become a new element or 
remain the same as before. In load balancer’s view, this linear mapping makes 
sense when the dynamic and interactive behavior influences every process 
behavior or resource behavior, or the process or resource behavior in influenced 
by the dynamic and interactive behavior. If the dynamic and interactive behavior 
changes the process or resource behavior, the load balancer will seek to investigate 
whether the dynamic and interactive behavior is a stimulus or is itself the result of 
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another behavior. To this end, if f is the defined stimulus on a linear transformation 
on space C, and f (c) = 0, then the transformation will be a dynamic and interactive 
behavior stimulus. f(c) =0 means that the dynamic and interactive behavior stimulus 
aliquots behavior c.

5. Conclusion 
In this paper, the dynamic and interactive nature and its impact on the load 

balancer functionality were discussed. Due to the occurrence of a dynamic and 
interactive nature in distributed Exascale systems, in addition to redistributing the 
load due to the occurrence of normal requests, the load balancer needs to be able 
to manage load balancing that results form dynamic and interactive requests as 
well. The nature of dynamic and interactive requests is different from the nature of 
normal requests. As a result, the mechanisms used to manage redistributions from 
dynamic and interactive requests will also vary. The nature of the dynamic and 
interactive requests is such that they transform the system and the load balancing 
state into an undefined state for the load balancer. 

Consequently, the influences of the dynamic and interactive nature on the 
load balancer functionality need to be taken into account. Given the dynamic and 
interactive nature, the concept of global activity as well as the elements affecting 
the space defining the load balancer, this paper proposed the load balancer’s 
operational function. This function describes the load balancer’s functionality in 
both traditional computing systems and distributed Exascale systems. Redefining 
the function load balancer’s functionality enables the load balancer to analyze the 
generating space of dynamic and interactive behaviors due to considering IK space. 
This analysis enables the load balancer to, based on the presented model in this 
paper, make decisions on whether the process behavior will result in a dynamic and 
interactive nature or not. This will allow the load balancer to manage redistribution 
in distributed Exascale systems in accordance with the process behavior.
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