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Abstract
Complex event processing (CEP) systems are currently widely 
used in large-scale enterprises for the processing of high 
and dynamically changing rates of input events using large 
number of complex rules. Given the hardware limitations 
of vertically scaled CEP solutions, horizontal scalability has 
become an essential requirement for modern CEP systems. In 
this paper, we propose an adaptive load-balancing technique 
via rule distribution (called ARD) for a cluster of CEP engines 
that provides horizontal scalability for CEP systems. Our 
experiments show our proposed technique provides higher 
scalability and yields higher throughput in comparison with two 
previously proposed non-adaptive load-balancing techniques, 
namely VISIRI and SCTXPF, when the system faces with 
variable workload. In addition, ARD keeps the system balanced 
more often.
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1. Introduction
In event-driven systems, real-time detection of complex patterns from a large 

amount of producing events and derivation of higher level events is an essential 
requirement. This type of information processing is called complex event processing 
(CEP) [1]. Processing rules describe complex event patterns in CEP.

CEP is employed in many domains such as in big data analysis [2] [3], business 
process management [4], smart cities and internet of things [5], [6]. In such 
domains, a CEP system must process high rates of input events to detect high 
number of complex patterns using the priori specified processing rules. To heighten 
the performance of the CEP system, one can distribute the tasks of a CEP system 
among multiple compute nodes. 

Some of the previously proposed techniques decompose rules to basic 
operators and distribute processing of the operators among compute nodes. 
These solutions have many limitations in rule decomposition and do not support all 
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types of CEP rules. Furthermore, these solutions have their own new rule syntaxes 
that stops users to use their priori known rule syntaxes of popular CEP engines. 
Another category of techniques distribute CEP rules among compute nodes, each 
of which runs an instance of a CEP engine. In these techniques, users can employ 
their favorite CEP engine and use a priory-known rule syntax. But the previously 
proposed techniques distribute rules statically at the startup of the CEP systems 
and are not adaptable with the changes in the system workload.    

In this paper, we propose an adaptive rule distribution (ARD) technique for 
scalable complex event processing. ARD distributes CEP rules among clustered 
compute nodes and continuously monitors resource usages of nodes to keep their 
loads balanced when the system workload changes.

We have organized the rest of the paper as follows. Section 2 presents 
our adaptive load balancing technique. Section 3 presents the results of our 
experiments. Section 4 presents related works and Section 5 concludes the paper.

2. Adaptive Rule Distribution (ARD)
In this section, we explain how ARD technique distributes the rule set of a 

CEP system among a clustered set of compute nodes and adaptively keeps the 
load of the system balanced. First, we present the architecture of ARD and then 
demonstrate how system load is calculated in ARD. Finally, we present our load 
balancing technique.

2.1. Architecture
Figure 1 shows the architecture of ARD. The CEP system consists of a coordinator 

and many CEP nodes. The coordinator distributes rules among the CEP nodes 
and continually monitors resource utilization of the CEP nodes. When resource 
utilizations of CEP nodes changes due to changes in their workloads, the load of 
system becomes imbalanced and coordinator migrates some rules from high-load 
nodes to low-load nodes till the system gets rebalanced again.

Figure 1. ARD Architecture
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2.2. Load Calculation
For making a correct decision for load balancing, the current value of resource 

utilization should not be used. Because making a decision based on the instant 
value is not the best decision. Therefore, we use the exponential moving average 
(EMA) to take part the history of resource utilizations in the calculation of system 
load and load balancing. Equation 1 shows the calculated load of resource r at 
each node.

In Equation 1, Lr
i  stands for the calculated load of resource r of node i and Cr

i  
stands for the current value of utilization of resource r of node i. 

We use standard deviation to calculate the system imbalance. If the system 
has n nodes and each node has m types of resources, we calculate the imbalance 
value (I) of the system as given by Equation 2.

2.3 Load Balancing
For load balancing in ARD, the system continually monitors the load of the nodes. 

When changes in the system workload imbalances the load of the system, rules 
are migrated between the nodes until the system becomes rebalanced. Balance 
status of the system is checked periodically. In each period, the load balancing 
procedure (Figure 2) is executed. In each period, the load balancer checks the 
imbalance value of the system. If the value is more than a predefined threshold, 
the system is considered to be in an imbalance state. Therefore, a rule is randomly 
selected from the node with the most average resource utilization and moved to the 
node with the least average resource utilization. In the next period, the imbalance 
value is checked again and if the system is still in an imbalance state, another rule 
is moved. This rule migration is repeated until the system becomes balanced again.

3. Evaluation
We have implemented ARD using Java language and evaluated its scalability 

Figure 2. ARD Load Balancing Flow
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and adaptability via some test scenarios. Our testbed consists of one coordinator 
node and a number of CEP nodes, each of which is a virtual machine that runs over 
VMware ESXi 6. The operating system of all nodes is Ubuntu server 16.04 and the 
Java version is 1.8. Coordinator has 4 processing cores and its Java heap has 2 
GB of memory. Each CEP node has 2 processing cores with 2GB of memory for 
its Java heap. Drools Fusion [7] is deployed on CEP nodes as the CEP engine of 
our evaluation. Drools Fusion is a popular Java-based open-source CEP engine 
developed by the Red Hat Inc.

The event set of our tests consists of 32 event types. The rule set of the evaluation 
consists of 1000 rules and is a random subset of all permutations of the event 
types, and conjunction (&), disjunction (|), negation (~) and sequence operators. In 
addition, all rules have a time-window.

To show the adaptability of ARD, the generation rate of each event type is random 
and total event generation rate is constant in each experiment. Furthermore, the 
generation rate of each event type varies every 10 minutes, and the duration of the 
experiments are 60 minutes.

The results of evaluation of ARD is compared with two other static load-balancing 
techniques. The first is SCTXPF[8] that balances the number of rules on CEP nodes. 
The second is VISIRI[9] that uses a rule cost estimation to distribute rules among 
CEP nodes according to the estimated costs.

To evaluate scalability, we evaluate the throughput with respect to the number 
of CEP nodes. We test a single CEP node several times with different workloads to 
find the maximum throughput of a single CEP node. Then we repeat the experiment 
with more number of nodes and the total event rate is increased with respect to the 

Figure 3. Throughput evaluation
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Figure 4. Load balance evaluation

number of CEP nodes. Figure 3 shows the increase in the throughput of the system 
when the number of nodes is increased linearly. As Figure 3 shows, in a variable 
workload, the throughput of ARD increases higher than in the other techniques 
when the number of CEP nodes increases.

To compare the load balancing of ARD, SCTXPF, and VISIRI, we calculate the 
average imbalance of the system for every 10 minutes. As Figure 4 shows, in addition 
to yielding lower system imbalance, ARD adaptively handles changes to system 
workloads. In contrast, changes in the workload in each period cause notable 
variation in the system imbalance when using SCTXPF and VISIRI techniques.

4. Related Work
Several techniques such as the work reported in [10] have been proposed for 

parallelization of CEP on a single machine with multiple multi-core CPUs. However, 
because of hardware limitations of vertical scaling of complex event processing, 
horizontal scaling of CEP is an essential requirement to counter a high rate of input 
events and a large number of complex rules.

The previously proposed techniques for horizontal scaling of complex event 
processing can be categorized in two categories. In the first category of horizontal 
scaling techniques such as those reported in [11]–[17], rules are decomposed to 
their basic CEP operators and operators are distributed among many compute 
nodes. The main shortcomings of these techniques are decomposing limitation 
of all types of CEO rules, load balancing and overloading of an operator and high 
communication overhead between compute nodes. 

The second category is clustering of CEP engines. In this category of horizontal 
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scaling of CEP, users can use popular CEP engines and their familiar rule syntaxes. 
Some of the previously proposed techniques for CEP clustering such as those 
reported in [8], [9], [18], [19] only balance the load of the system statically via 
distributing the rules among the compute nodes. Therefore they do not handle 
changes in the system workload pattern during the lifetime of the system.

In [4], an adaptive load balancing for some types of CEP rules in business 
process monitoring is proposed. However, this is not a general adaptive load 
balancing technique.

5. Conclusion
Given to the rise in the rates of input events and the number of rules in CEP systems, 

scalability of CEP systems is an essential requirement. In this paper, we propose an 
adaptive load balancing technique, called RAD, via rule distribution among a scalable 
cluster of CEP engines. In ARD, resource utilization of all compute nodes is monitored 
and if the system goes to an imbalance state because of changes in the workload, 
rules are migrated to rebalance the system. Our experiments shows higher system 
throughput under ARD, with increases in the number of compute nodes, in comparison 
with two other non-adaptive load-balancing mechanisms. In addition, our experiments 
show that ARD makes the system more balanced when the workload varies during 
system operation. As future work, one can develop a fully distributed CEP system by 
removing the singular coordinator, which can become a single point of failure, and 
distributing its tasks among the computing nodes that run the CEP engines.
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