
133

Scalable Complex Event Processing Using Rule
Distribution

Mohsen Sharifi, Mohammad Ali Fardbastani

Distributed Systems Research Lab, School of Computer Engineering, Iran University of
Science and Technology, Tehran, Iran, msharifi@iust.ac.ir, fardbastani@iust.ac.ir

*Correspondence:
Mohsen Sharifi,

Distributed Systems
Research Lab, School of
Computer Engineering,

Iran University of Science
and Technology, Tehran,
Iran, msharifi@iust.ac.ir

Abstract
Complex event processing (CEP) systems are currently widely
used in large-scale enterprises for the processing of high
and dynamically changing rates of input events using large
number of complex rules. Given the hardware limitations
of vertically scaled CEP solutions, horizontal scalability has
become an essential requirement for modern CEP systems. In
this paper, we propose an adaptive load-balancing technique
via rule distribution (called ARD) for a cluster of CEP engines
that provides horizontal scalability for CEP systems. Our
experiments show our proposed technique provides higher
scalability and yields higher throughput in comparison with two
previously proposed non-adaptive load-balancing techniques,
namely VISIRI and SCTXPF, when the system faces with
variable workload. In addition, ARD keeps the system balanced
more often.

Keywords: complex event processing, scalability, CEP,
horizontal scaling, load balancing, throughput.

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 2, 2018, pp. 133-139
https://doi.org/10.32010/26166127.2018.1.2.133.139

1. Introduction
In event-driven systems, real-time detection of complex patterns from a large

amount of producing events and derivation of higher level events is an essential
requirement. This type of information processing is called complex event processing
(CEP) [1]. Processing rules describe complex event patterns in CEP.

CEP is employed in many domains such as in big data analysis [2] [3], business
process management [4], smart cities and internet of things [5], [6]. In such
domains, a CEP system must process high rates of input events to detect high
number of complex patterns using the priori specified processing rules. To heighten
the performance of the CEP system, one can distribute the tasks of a CEP system
among multiple compute nodes.

Some of the previously proposed techniques decompose rules to basic
operators and distribute processing of the operators among compute nodes.
These solutions have many limitations in rule decomposition and do not support all

134

types of CEP rules. Furthermore, these solutions have their own new rule syntaxes
that stops users to use their priori known rule syntaxes of popular CEP engines.
Another category of techniques distribute CEP rules among compute nodes, each
of which runs an instance of a CEP engine. In these techniques, users can employ
their favorite CEP engine and use a priory-known rule syntax. But the previously
proposed techniques distribute rules statically at the startup of the CEP systems
and are not adaptable with the changes in the system workload.

In this paper, we propose an adaptive rule distribution (ARD) technique for
scalable complex event processing. ARD distributes CEP rules among clustered
compute nodes and continuously monitors resource usages of nodes to keep their
loads balanced when the system workload changes.

We have organized the rest of the paper as follows. Section 2 presents
our adaptive load balancing technique. Section 3 presents the results of our
experiments. Section 4 presents related works and Section 5 concludes the paper.

2. Adaptive Rule Distribution (ARD)
In this section, we explain how ARD technique distributes the rule set of a

CEP system among a clustered set of compute nodes and adaptively keeps the
load of the system balanced. First, we present the architecture of ARD and then
demonstrate how system load is calculated in ARD. Finally, we present our load
balancing technique.

2.1. Architecture
Figure 1 shows the architecture of ARD. The CEP system consists of a coordinator

and many CEP nodes. The coordinator distributes rules among the CEP nodes
and continually monitors resource utilization of the CEP nodes. When resource
utilizations of CEP nodes changes due to changes in their workloads, the load of
system becomes imbalanced and coordinator migrates some rules from high-load
nodes to low-load nodes till the system gets rebalanced again.

Figure 1. ARD Architecture

Mohsen Sharifi and Mohammad Ali Fardbastani

135

2.2. Load Calculation
For making a correct decision for load balancing, the current value of resource

utilization should not be used. Because making a decision based on the instant
value is not the best decision. Therefore, we use the exponential moving average
(EMA) to take part the history of resource utilizations in the calculation of system
load and load balancing. Equation 1 shows the calculated load of resource r at
each node.

In Equation 1, Lr
i stands for the calculated load of resource r of node i and Cr

i
stands for the current value of utilization of resource r of node i.

We use standard deviation to calculate the system imbalance. If the system
has n nodes and each node has m types of resources, we calculate the imbalance
value (I) of the system as given by Equation 2.

2.3 Load Balancing
For load balancing in ARD, the system continually monitors the load of the nodes.

When changes in the system workload imbalances the load of the system, rules
are migrated between the nodes until the system becomes rebalanced. Balance
status of the system is checked periodically. In each period, the load balancing
procedure (Figure 2) is executed. In each period, the load balancer checks the
imbalance value of the system. If the value is more than a predefined threshold,
the system is considered to be in an imbalance state. Therefore, a rule is randomly
selected from the node with the most average resource utilization and moved to the
node with the least average resource utilization. In the next period, the imbalance
value is checked again and if the system is still in an imbalance state, another rule
is moved. This rule migration is repeated until the system becomes balanced again.

3. Evaluation
We have implemented ARD using Java language and evaluated its scalability

Figure 2. ARD Load Balancing Flow

Azerbaijan Journal of High Performance Computing, 1(2), 2018

(1)

(2)

136

and adaptability via some test scenarios. Our testbed consists of one coordinator
node and a number of CEP nodes, each of which is a virtual machine that runs over
VMware ESXi 6. The operating system of all nodes is Ubuntu server 16.04 and the
Java version is 1.8. Coordinator has 4 processing cores and its Java heap has 2
GB of memory. Each CEP node has 2 processing cores with 2GB of memory for
its Java heap. Drools Fusion [7] is deployed on CEP nodes as the CEP engine of
our evaluation. Drools Fusion is a popular Java-based open-source CEP engine
developed by the Red Hat Inc.

The event set of our tests consists of 32 event types. The rule set of the evaluation
consists of 1000 rules and is a random subset of all permutations of the event
types, and conjunction (&), disjunction (|), negation (~) and sequence operators. In
addition, all rules have a time-window.

To show the adaptability of ARD, the generation rate of each event type is random
and total event generation rate is constant in each experiment. Furthermore, the
generation rate of each event type varies every 10 minutes, and the duration of the
experiments are 60 minutes.

The results of evaluation of ARD is compared with two other static load-balancing
techniques. The first is SCTXPF[8] that balances the number of rules on CEP nodes.
The second is VISIRI[9] that uses a rule cost estimation to distribute rules among
CEP nodes according to the estimated costs.

To evaluate scalability, we evaluate the throughput with respect to the number
of CEP nodes. We test a single CEP node several times with different workloads to
find the maximum throughput of a single CEP node. Then we repeat the experiment
with more number of nodes and the total event rate is increased with respect to the

Figure 3. Throughput evaluation

Mohsen Sharifi and Mohammad Ali Fardbastani

137

Figure 4. Load balance evaluation

number of CEP nodes. Figure 3 shows the increase in the throughput of the system
when the number of nodes is increased linearly. As Figure 3 shows, in a variable
workload, the throughput of ARD increases higher than in the other techniques
when the number of CEP nodes increases.

To compare the load balancing of ARD, SCTXPF, and VISIRI, we calculate the
average imbalance of the system for every 10 minutes. As Figure 4 shows, in addition
to yielding lower system imbalance, ARD adaptively handles changes to system
workloads. In contrast, changes in the workload in each period cause notable
variation in the system imbalance when using SCTXPF and VISIRI techniques.

4. Related Work
Several techniques such as the work reported in [10] have been proposed for

parallelization of CEP on a single machine with multiple multi-core CPUs. However,
because of hardware limitations of vertical scaling of complex event processing,
horizontal scaling of CEP is an essential requirement to counter a high rate of input
events and a large number of complex rules.

The previously proposed techniques for horizontal scaling of complex event
processing can be categorized in two categories. In the first category of horizontal
scaling techniques such as those reported in [11]–[17], rules are decomposed to
their basic CEP operators and operators are distributed among many compute
nodes. The main shortcomings of these techniques are decomposing limitation
of all types of CEO rules, load balancing and overloading of an operator and high
communication overhead between compute nodes.

The second category is clustering of CEP engines. In this category of horizontal

Azerbaijan Journal of High Performance Computing, 1(2), 2018

138

scaling of CEP, users can use popular CEP engines and their familiar rule syntaxes.
Some of the previously proposed techniques for CEP clustering such as those
reported in [8], [9], [18], [19] only balance the load of the system statically via
distributing the rules among the compute nodes. Therefore they do not handle
changes in the system workload pattern during the lifetime of the system.

In [4], an adaptive load balancing for some types of CEP rules in business
process monitoring is proposed. However, this is not a general adaptive load
balancing technique.

5. Conclusion
Given to the rise in the rates of input events and the number of rules in CEP systems,

scalability of CEP systems is an essential requirement. In this paper, we propose an
adaptive load balancing technique, called RAD, via rule distribution among a scalable
cluster of CEP engines. In ARD, resource utilization of all compute nodes is monitored
and if the system goes to an imbalance state because of changes in the workload,
rules are migrated to rebalance the system. Our experiments shows higher system
throughput under ARD, with increases in the number of compute nodes, in comparison
with two other non-adaptive load-balancing mechanisms. In addition, our experiments
show that ARD makes the system more balanced when the workload varies during
system operation. As future work, one can develop a fully distributed CEP system by
removing the singular coordinator, which can become a single point of failure, and
distributing its tasks among the computing nodes that run the CEP engines.

References
[1] Dayarathna, M., & Perera, S. (2018). Recent Advancements in Event Process-

ing. ACM Computing Surveys, 51(2), 1-36. doi:10.1145/3170432
[2] Zhang, P., Shi, X., & Khan, S. U. (2018). Quantcloud: Enabling big data complex

event processing for quantitative finance through a data-driven execution. IEEE Trans-
actions on Big Data.

[3] Shi, S., Jin, D., & Tiong-Thye, G. (2017). Real-time public mood tracking of Chi-
nese microblog streams with complex event processing. IEEE Access, 5, 421-431.

[4] Fardbastani, M. A., Allahdadi, F., & Sharifi, M. (2018). Business process mon-
itoring via decentralized complex event processing. Enterprise Information Sys-
tems, 12(10), 1257-1284.

[5] Bonino, D., & De Russis, L. (2018). Complex Event Processing for City Officers:
A Filter and Pipe Visual Approach. IEEE Internet of Things Journal, 5(2), 775-783.

[6] Graubner, P., Thelen, C., Körber, M., Sterz, A., Salvaneschi, G., Mezini, M., See-
gar, B., Freisleben, B. (2018, June). Multimodal Complex Event Processing on Mobile
Devices. In Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems (pp. 112-123). ACM.

[7] Browne, P. (2009). JBoss drools business rules. Birmingham: Packt.
[8] Isoyama, K., Kobayashi, Y., Sato, T., Kida, K., Yoshida, M., & Tagato, H. (2012,

July). A scalable complex event processing system and evaluations of its performance.
In Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems (pp. 123-126). ACM.

Mohsen Sharifi and Mohammad Ali Fardbastani

139

[9] Kumarasinghe, M., Tharanga, G., Weerasinghe, L., Wickramarathna, U., &
Ranathunga, S. (2015, June). VISIRI-Distributed Complex Event Processing System
for Handling Large Number of Queries. In International Conference on Coordination
Languages and Models (pp. 230-245). Springer, Cham.

[10] Fathollahzadeh, S., Teymourian, K., & Sharifi, M. (2016, June). Stateful complex
event detection on event streams using parallelization of event stream aggregations
and detection tasks. In Proceedings of the 10th ACM International Conference on Dis-
tributed and Event-based Systems (pp. 390-393). ACM.

[11] Mayer, R., Slo, A., Tariq, M. A., Rothermel, K., Gräber, M., & Ramachandran, U.
(2017, December). Spectre: Supporting consumption policies in window-based paral-
lel complex event processing. In Proceedings of the 18th ACM/IFIP/USENIX Middle-
ware Conference (pp. 161-173). ACM.

[12] Mayer, R., Tariq, M. A., & Rothermel, K. (2017, June). Minimizing communica-
tion overhead in window-based parallel complex event processing. In Proceedings of
the 11th ACM International Conference on Distributed and Event-based Systems (pp.
54-65). ACM.

[13] Gong, Y., Kuang, H., Cai, X., Hu, H., Song, W., & Lu, J. (2017, June). Paral-
lelized Mobility-Aware Complex Event Processing. In 2017 IEEE International Confer-
ence on Web Services (ICWS) (pp. 898-901). IEEE.

[14] Dwarakanath, R. C., Koldehofe, B., & Steinmetz, R. (2016, December). Oper-
ator Migration for Distributed Complex Event Processing in Device-to-Device Based
Networks. In M4IoT Middleware (pp. 13-18).

[15] Fonseca, J., Ferraz, C., & Gama, K. (2016, June). A policy-based coordination
architecture for distributed complex event processing in the internet of things: doctoral
symposium. In Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems (pp. 418-421). ACM.

[16] Weisenburger, P., Luthra, M., Koldehofe, B., & Salvaneschi, G. (2017, May).
Quality-aware runtime adaptation in complex event processing. In Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), 2017 IEEE/ACM 12th Interna-
tional Symposium on (pp. 140-151). IEEE.

[17] Wang, Q., & Shang, Y. (2019). A Distributed Complex Event Processing Sys-
tem Based on Publish/Subscribe. In Recent Developments in Intelligent Computing,
Communication and Devices (pp. 981-990). Springer, Singapore.

[18] Kobayashi, Y., Isoyama, K., Kida, K., & Tagato, H. (2015, June). A complex
event processing for large-scale M2M services and its performance evaluations.
In Proceedings of the 9th ACM International Conference on Distributed Event-Based
Systems (pp. 336-339). ACM.

[19] Pathak, R., & Vaidehi, V. (2015, May). An efficient rule balancing for scalable
complex event processing. In 2015 IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE) (pp. 190-195).

Submitted 25.06.2018
Accepted 12.10.2018

Azerbaijan Journal of High Performance Computing, 1(2), 2018

