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Abstract
During history, retrieval systems become more complicated in 
their architecture design and work principles. The system that 
gathers text and visual data from the internet must classify the 
data and store it as the set of metadata. The modern AI clas-
sifiers that are used in retrieval systems might be tricked by 
skilled intruders who use adversarial attacks on the retrieval 
system. The goal of this paper is to review different strategies 
of attacks and defenses, describe state-of-the-art methods from 
both sides, and show how important the development of HPC is 
in protecting systems. 
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1. Introduction
The main goal of adversarial attacks is to trick the classifier in such a way to cause 

machine learning to make a mistake. In the lousily coupled infrastructures such as 
retrieval systems, adversarial attacks, as well as the other types of attacks (Hydara, I., 
Sultan, A. B. M., Zulzalil, H., & Admodisastro, N., 2015; Voitovych, O. P., Yuvkovetskyi, 
O. S., & Kupershtein, L. M., 2016; Mahjabin, T., Xiao, Y., Sun, G., & Jiang, W., 2017; 
Bai, Y., & Chen, Z., 2015), create multiple threats for system’s authenticity, possession, 
availability, and integrity

An attack strategy is designed by hackers depending on their goals and intrusion 
capabilities to a victim system. From the other side, the defender tactics must be 
modeled concerning thread modeling techniques with possible attack vectors. That 
causes to the conclusion that the defender must not ignore any possible threats to a 
system by any skilled hacker. With regarding accessibility to the system by the intruder, 
there are two main attack classes:

• Black Box Attack
• White Box Attack
The black box attacks strategies usually selected by the hackers if there is no data 

about the victim model (Papernot, N., McDaniel, P., Goodfellow, I., et al., 2017). In 
contrast, the white box attacks represent the attacking mechanism of the system’s 
integrity through changing the model’s parameters (gradients) (Zhang, Y., & Liang, P., 
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2019). 
Both strategies can also be classified as Targeted and Un-targeted attacks (Kwon, 

H., Kim, Y., Park, K. W., et al., 2018). In a targeted attack, the attacker disturbs the 
input data to predict the wrong but specific target class. An untargeted attack defines 
the attack techniques where the target label can be anything except the correct label.

2. Attack strategies 
Fast Gradient Sign Method FGSM  
Google introduced this method (Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014). 

The attack is classified as a white box attack because the attacker Initially must have 
access to the training set. The Idea of FGSM based on the manipulation of the 
gradients of the loss for the input data in order to create the new data that can maximize 
the loss. The loss maximization must not be random but calculated in such a way to 
change the gradients onto the direction to misclassify a model. This kind of attack 
works well for images because it is hard to detect the little changes in images for the 
human eye, especially when only a few pixels are replaced.   

 In famous work, the researchers show that adding small noises to the original 
image of the panda causes the model to tag the image as a gibbon, with high accuracy 
(Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014).  

In this article, the classifier defined by the deep neural network (DNN) with the 
SoftMax output activation as 𝑦𝑦" = 𝑓𝑓(𝜃𝜃, 𝑥𝑥)  for a given data-label pair (x, y). FGSM 
identifies the adversarial data 𝑥𝑥"	by maximizing the loss 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) = 𝐿𝐿(𝑓𝑓(𝜃𝜃, 𝑥𝑥!), 𝑦𝑦)  subject 
to the 𝑙𝑙" perturbation constraint -|𝑥𝑥! − 𝑥𝑥|-

"
≤ 	𝜀𝜀 with 𝜀𝜀 to be the attack strength. Under 

the first-order approximation, i.e., 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) ≈ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) +	∇#𝐿𝐿(𝑥𝑥, 𝑦𝑦)$ ∙ (	𝑥𝑥" − x)  the 
adversarial data can be presented as 

𝑥𝑥" = 𝑥𝑥 + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇#𝐽𝐽(𝜃𝜃, 𝑥𝑥, 𝑦𝑦)), 
where  

• 𝑥𝑥": Adversarial data 
• 𝑥𝑥:  Original input data 
• y: Original input label 
• 𝜀𝜀: Multiplier  
• 𝜃𝜃: Model parameters 
• 𝐽𝐽: Loss 
There is also an extension of FGSM with additionally enhanced iterations IFGSM 

that can be defined as 
𝑥𝑥% = 𝑥𝑥%&' + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)), 

where 𝑚𝑚 = 1,… ,𝑀𝑀,  𝑥𝑥()) = 𝑥𝑥 and 𝑥𝑥! = 𝑥𝑥(+), with 𝑀𝑀 being the number of iterations, the 
targeted FGSM can mislead any CNN with ReLU activation to classify. This formula 
can be extended with an elementwise clipping function which clips each element 𝑥𝑥% 
of the input x into the range of [max(0, 𝑥𝑥% − 𝜀𝜀) ,min(1, 𝑥𝑥% + 𝜀𝜀)], 

𝑥𝑥% = 𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐 L𝑥𝑥%&' + 	𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠M𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)NO , 𝑥𝑥) = 𝑥𝑥, 
where the 𝑐𝑐 = ,

-
 . Typically, each component of the input vector, e.g., a pixel, is 

normalized within [0, 1]. 
Project Gradient Descent (PGD) attack is another type of IFGM (Wu, F., Gazo, R., 

Haviarova, E., & Benes, B., 2019). The idea based on randomly picking a point within 
a confined wrapper around each clean input and then applying the multi-step IFGM in 
order to model adversarial data for the right input. 

There are some powerful gradient-based attacks known for today: 
 Elastic-Net attacks EAD based on the 𝐿𝐿. and 𝐿𝐿" distortion, where 𝑐𝑐𝑠𝑠	𝐿𝐿'-oriented 

adversarial example includes the state-of-the-art 𝐿𝐿.	attack in the particular case 
(Chang, T. J., He, Y., & Li, P., 2018). 

Another example based on the idea to us e C&W algorithm on 𝐿𝐿. shows that the 
adversarial example can be generated as an interactive attack (Chen, P. Y., Sharma, 
Y., Zhang, H., Yi, J., & Hsieh, C. J., 2018; Carlini, N., & Wagner, D., 2017). The loss 
function was defined as 𝑙𝑙(𝑥𝑥!) = 𝑚𝑚𝑐𝑐𝑥𝑥	(𝑚𝑚𝑐𝑐𝑥𝑥{𝑍𝑍(𝑥𝑥!)/: 𝑠𝑠 ≠ 𝑡𝑡} − 𝑍𝑍(𝑥𝑥!)0 , −𝑘𝑘) . As κ increases, 
the model classifies the adversarial example as increasingly more likely; this example 
was high-confidence adversarial. 

The third powerful gradient-based attack was described (Carlini, N., & Wagner, D., 
2017). The method based on PGD adversarial example with the "first-order adversary" 
represented as most vigorous attack utilizing the local first-order information about the 
network 

In the conclusion of the gradient-based attacks, the research shows that if an 
intruder can access to the model's gradients, they can craft a new fake-set of 
adversarial examples to trick the model. It proves that adversarial example is hard to 
be detected with classic methods – the type of security through obscurity aside is hard 
to defend against them. 

 
Backward Pass Differentiable approximation. 
Uses against the defender that mask the gradients, so approximation of 𝑓𝑓(𝑥𝑥) 

becomes a hard problem. In that case, attackers build the neural network from scratch 
by using the same train data as the classifier where he uses his gradients. The idea is 
simple: if the attacker cannot use the gradients, he creates the gradients. BPDA allows 
for attacking non-differentiable networks by approximating the gradients of the non-
differentiable layer. The gradient is estimated by computing the forward pass normally 
but replacing a non-differentiable layer 𝑓𝑓(∙) with a differentiable approximation ℎ(∙) ≈
𝑓𝑓(∙) on the backward pass.  

Assume that the transform 𝑓𝑓(𝑥𝑥) is simple; if data were altered too much, it would be 
hard to predict the correct label correctly. If a gradient from 𝑓𝑓(𝑥𝑥) is unattainable, then 
the attacker defines the network 𝑠𝑠(𝑥𝑥) and train the neural network to approximate 𝑓𝑓(𝑥𝑥). 
If 𝑠𝑠(𝑥𝑥)  approximates 𝑓𝑓(𝑥𝑥), then there is a problem to getting it is gradient and using it 
to replace the one that would come from 𝑓𝑓(𝑥𝑥) when running their optimizer.  

 
Defending strategies must rely on research methodologies, such as formal methods  

or empirical defenses  (Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A., 
2017; Chong, S., Guttman, J., Datta, A., Myers, A., et al., 2016; Voas, J., & Schaffer, 
K., 2016; Smith, W., 2019). Formal methods are a mathematical technique used to 
guarantee the robustness of software/ hardware systems. As applied to neural 
networks, state of the art formal method techniques today cannot verify a network more 
than a few layers deep. Unlike the formal methods, empirical defenses are relying on 
experiments to evaluate the effectiveness of a defense. There are some well-known 
strategies against adversarial attacks based on empirical methods: Adversarial 
training, Gradient Masking, Extra class, Input modification, Detection, and the Barrage 
of Random Transform BaRT. 

Adversarial Training 
This technique based on the idea that the defender trains the adversarial examples 

with the rest of the dataset. This method teaches the model to ignore noises and only 
learn it from the robust feature. 

The adversarial training has a disadvantage – it can only defend the model against 
the same attack used to craft examples included initially in the training pool. The 
increasing number of adversarial examples that defender adds to the training set 
creates another problem with the model's underfitting.  

In general, to describe the adversarial training the risk minimization (ERM) must 
be defined, where the aim is to minimize the risk over adversarial example 

ℎ ∗	= 𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠1∈ℋℍ(#,5!"#$)~7 Z max
89:%&'&#98";<

𝐿𝐿(ℎ(𝑥𝑥=>?), 𝑦𝑦0@AB) 	[, 

• ℎ	 ∈ ℋ:	target model, 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡	𝜖𝜖	𝑤𝑤ℎ𝑏𝑏𝑎𝑎𝑏𝑏	-|𝑥𝑥=>? − 𝑥𝑥|-

"
≤ 𝜖𝜖. 

There is some variation of the adversarial training method:  Ensemble adversarial 
training, where the augments training data with perturbations transferred from other 
models (Oltramari, A., & Kott, A., 2018). 

Another method was proposed in by training the dataset via Spectral Normalization 
(Tramèr, F., Kurakin, A., Papernot, N., et al., 2017) 

The Barrage of Random Transform BaRT 
The Idea of BaRT technique based on modifying the image at the inference time 

(Farnia, F., Zhang, J. M., & Tse, D., 2018). This modifying includes the transformation 
such as blurring, noise adding, FFT Alteration,  Gaussian blur effects (Raff, E., 
Sylvester, J., Forsyth, S., & McLean, M., 2019). Moreover, this chain of transformation 
is done randomly. The following algorithm shows how BaRT is applied to the data: 

• Select a large number of transformations 

.

,
,
,

,
,
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Fast Gradient Sign Method FGSM  
Google introduced this method (Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014). 

The attack is classified as a white box attack because the attacker Initially must have 
access to the training set. The Idea of FGSM based on the manipulation of the 
gradients of the loss for the input data in order to create the new data that can maximize 
the loss. The loss maximization must not be random but calculated in such a way to 
change the gradients onto the direction to misclassify a model. This kind of attack 
works well for images because it is hard to detect the little changes in images for the 
human eye, especially when only a few pixels are replaced.   

 In famous work, the researchers show that adding small noises to the original 
image of the panda causes the model to tag the image as a gibbon, with high accuracy 
(Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014).  

In this article, the classifier defined by the deep neural network (DNN) with the 
SoftMax output activation as 𝑦𝑦" = 𝑓𝑓(𝜃𝜃, 𝑥𝑥)  for a given data-label pair (x, y). FGSM 
identifies the adversarial data 𝑥𝑥"	by maximizing the loss 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) = 𝐿𝐿(𝑓𝑓(𝜃𝜃, 𝑥𝑥!), 𝑦𝑦)  subject 
to the 𝑙𝑙" perturbation constraint -|𝑥𝑥! − 𝑥𝑥|-

"
≤ 	𝜀𝜀 with 𝜀𝜀 to be the attack strength. Under 

the first-order approximation, i.e., 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) ≈ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) +	∇#𝐿𝐿(𝑥𝑥, 𝑦𝑦)$ ∙ (	𝑥𝑥" − x)  the 
adversarial data can be presented as 

𝑥𝑥" = 𝑥𝑥 + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇#𝐽𝐽(𝜃𝜃, 𝑥𝑥, 𝑦𝑦)), 
where  

• 𝑥𝑥": Adversarial data 
• 𝑥𝑥:  Original input data 
• y: Original input label 
• 𝜀𝜀: Multiplier  
• 𝜃𝜃: Model parameters 
• 𝐽𝐽: Loss 
There is also an extension of FGSM with additionally enhanced iterations IFGSM 

that can be defined as 
𝑥𝑥% = 𝑥𝑥%&' + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)), 

where 𝑚𝑚 = 1,… ,𝑀𝑀,  𝑥𝑥()) = 𝑥𝑥 and 𝑥𝑥! = 𝑥𝑥(+), with 𝑀𝑀 being the number of iterations, the 
targeted FGSM can mislead any CNN with ReLU activation to classify. This formula 
can be extended with an elementwise clipping function which clips each element 𝑥𝑥% 
of the input x into the range of [max(0, 𝑥𝑥% − 𝜀𝜀) ,min(1, 𝑥𝑥% + 𝜀𝜀)], 

𝑥𝑥% = 𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐 L𝑥𝑥%&' + 	𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠M𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)NO , 𝑥𝑥) = 𝑥𝑥, 
where the 𝑐𝑐 = ,

-
 . Typically, each component of the input vector, e.g., a pixel, is 

normalized within [0, 1]. 
Project Gradient Descent (PGD) attack is another type of IFGM (Wu, F., Gazo, R., 

Haviarova, E., & Benes, B., 2019). The idea based on randomly picking a point within 
a confined wrapper around each clean input and then applying the multi-step IFGM in 
order to model adversarial data for the right input. 

There are some powerful gradient-based attacks known for today: 
 Elastic-Net attacks EAD based on the 𝐿𝐿. and 𝐿𝐿" distortion, where 𝑐𝑐𝑠𝑠	𝐿𝐿'-oriented 

adversarial example includes the state-of-the-art 𝐿𝐿.	attack in the particular case 
(Chang, T. J., He, Y., & Li, P., 2018). 

Another example based on the idea to us e C&W algorithm on 𝐿𝐿. shows that the 
adversarial example can be generated as an interactive attack (Chen, P. Y., Sharma, 
Y., Zhang, H., Yi, J., & Hsieh, C. J., 2018; Carlini, N., & Wagner, D., 2017). The loss 
function was defined as 𝑙𝑙(𝑥𝑥!) = 𝑚𝑚𝑐𝑐𝑥𝑥	(𝑚𝑚𝑐𝑐𝑥𝑥{𝑍𝑍(𝑥𝑥!)/: 𝑠𝑠 ≠ 𝑡𝑡} − 𝑍𝑍(𝑥𝑥!)0 , −𝑘𝑘) . As κ increases, 
the model classifies the adversarial example as increasingly more likely; this example 
was high-confidence adversarial. 

The third powerful gradient-based attack was described (Carlini, N., & Wagner, D., 
2017). The method based on PGD adversarial example with the "first-order adversary" 
represented as most vigorous attack utilizing the local first-order information about the 
network 

In the conclusion of the gradient-based attacks, the research shows that if an 
intruder can access to the model's gradients, they can craft a new fake-set of 
adversarial examples to trick the model. It proves that adversarial example is hard to 
be detected with classic methods – the type of security through obscurity aside is hard 
to defend against them. 

 
Backward Pass Differentiable approximation. 
Uses against the defender that mask the gradients, so approximation of 𝑓𝑓(𝑥𝑥) 

becomes a hard problem. In that case, attackers build the neural network from scratch 
by using the same train data as the classifier where he uses his gradients. The idea is 
simple: if the attacker cannot use the gradients, he creates the gradients. BPDA allows 
for attacking non-differentiable networks by approximating the gradients of the non-
differentiable layer. The gradient is estimated by computing the forward pass normally 
but replacing a non-differentiable layer 𝑓𝑓(∙) with a differentiable approximation ℎ(∙) ≈
𝑓𝑓(∙) on the backward pass.  

Assume that the transform 𝑓𝑓(𝑥𝑥) is simple; if data were altered too much, it would be 
hard to predict the correct label correctly. If a gradient from 𝑓𝑓(𝑥𝑥) is unattainable, then 
the attacker defines the network 𝑠𝑠(𝑥𝑥) and train the neural network to approximate 𝑓𝑓(𝑥𝑥). 
If 𝑠𝑠(𝑥𝑥)  approximates 𝑓𝑓(𝑥𝑥), then there is a problem to getting it is gradient and using it 
to replace the one that would come from 𝑓𝑓(𝑥𝑥) when running their optimizer.  

 
Defending strategies must rely on research methodologies, such as formal methods  

or empirical defenses  (Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A., 
2017; Chong, S., Guttman, J., Datta, A., Myers, A., et al., 2016; Voas, J., & Schaffer, 
K., 2016; Smith, W., 2019). Formal methods are a mathematical technique used to 
guarantee the robustness of software/ hardware systems. As applied to neural 
networks, state of the art formal method techniques today cannot verify a network more 
than a few layers deep. Unlike the formal methods, empirical defenses are relying on 
experiments to evaluate the effectiveness of a defense. There are some well-known 
strategies against adversarial attacks based on empirical methods: Adversarial 
training, Gradient Masking, Extra class, Input modification, Detection, and the Barrage 
of Random Transform BaRT. 

Adversarial Training 
This technique based on the idea that the defender trains the adversarial examples 

with the rest of the dataset. This method teaches the model to ignore noises and only 
learn it from the robust feature. 

The adversarial training has a disadvantage – it can only defend the model against 
the same attack used to craft examples included initially in the training pool. The 
increasing number of adversarial examples that defender adds to the training set 
creates another problem with the model's underfitting.  

In general, to describe the adversarial training the risk minimization (ERM) must 
be defined, where the aim is to minimize the risk over adversarial example 

ℎ ∗	= 𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠1∈ℋℍ(#,5!"#$)~7 Z max
89:%&'&#98";<

𝐿𝐿(ℎ(𝑥𝑥=>?), 𝑦𝑦0@AB) 	[, 

• ℎ	 ∈ ℋ:	target model, 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡	𝜖𝜖	𝑤𝑤ℎ𝑏𝑏𝑎𝑎𝑏𝑏	-|𝑥𝑥=>? − 𝑥𝑥|-

"
≤ 𝜖𝜖. 

There is some variation of the adversarial training method:  Ensemble adversarial 
training, where the augments training data with perturbations transferred from other 
models (Oltramari, A., & Kott, A., 2018). 

Another method was proposed in by training the dataset via Spectral Normalization 
(Tramèr, F., Kurakin, A., Papernot, N., et al., 2017) 

The Barrage of Random Transform BaRT 
The Idea of BaRT technique based on modifying the image at the inference time 

(Farnia, F., Zhang, J. M., & Tse, D., 2018). This modifying includes the transformation 
such as blurring, noise adding, FFT Alteration,  Gaussian blur effects (Raff, E., 
Sylvester, J., Forsyth, S., & McLean, M., 2019). Moreover, this chain of transformation 
is done randomly. The following algorithm shows how BaRT is applied to the data: 

• Select a large number of transformations 

Fast Gradient Sign Method FGSM  
Google introduced this method (Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014). 

The attack is classified as a white box attack because the attacker Initially must have 
access to the training set. The Idea of FGSM based on the manipulation of the 
gradients of the loss for the input data in order to create the new data that can maximize 
the loss. The loss maximization must not be random but calculated in such a way to 
change the gradients onto the direction to misclassify a model. This kind of attack 
works well for images because it is hard to detect the little changes in images for the 
human eye, especially when only a few pixels are replaced.   

 In famous work, the researchers show that adding small noises to the original 
image of the panda causes the model to tag the image as a gibbon, with high accuracy 
(Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014).  

In this article, the classifier defined by the deep neural network (DNN) with the 
SoftMax output activation as 𝑦𝑦" = 𝑓𝑓(𝜃𝜃, 𝑥𝑥)  for a given data-label pair (x, y). FGSM 
identifies the adversarial data 𝑥𝑥"	by maximizing the loss 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) = 𝐿𝐿(𝑓𝑓(𝜃𝜃, 𝑥𝑥!), 𝑦𝑦)  subject 
to the 𝑙𝑙" perturbation constraint -|𝑥𝑥! − 𝑥𝑥|-

"
≤ 	𝜀𝜀 with 𝜀𝜀 to be the attack strength. Under 

the first-order approximation, i.e., 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) ≈ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) +	∇#𝐿𝐿(𝑥𝑥, 𝑦𝑦)$ ∙ (	𝑥𝑥" − x)  the 
adversarial data can be presented as 

𝑥𝑥" = 𝑥𝑥 + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇#𝐽𝐽(𝜃𝜃, 𝑥𝑥, 𝑦𝑦)) 
Where:  
• 𝑥𝑥": Adversarial data 
• 𝑥𝑥:  Original input data 
• y: Original input label 
• 𝜀𝜀: Multiplier  
• 𝜃𝜃: Model parameters 
• 𝐽𝐽: Loss 
There is also an extension of FGSM with additionally enhanced iterations IFGSM 

that can be defined as 
𝑥𝑥% = 𝑥𝑥%&' + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)) 

Where 𝑚𝑚 = 1, … , 𝑀𝑀,  𝑥𝑥()) = 𝑥𝑥 and 𝑥𝑥! = 𝑥𝑥(+), with 𝑀𝑀 being the number of iterations, 
the targeted FGSM can mislead any CNN with ReLU activation to classify. This formula 
can be extended with an elementwise clipping function which clips each element 𝑥𝑥% 
of the input x into the range of [max(0, 𝑥𝑥% − 𝜀𝜀) , min(1, 𝑥𝑥% + 𝜀𝜀)], 

𝑥𝑥% = 𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐 L𝑥𝑥%&' + 	𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠M𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)NO , 𝑥𝑥) = 𝑥𝑥 
Where the 𝑐𝑐 = ,

-
 . Typically, each component of the input vector, e.g., a pixel, is 

normalized within [0, 1] 
Project Gradient Descent (PGD) attack is another type of IFGM (Wu, F., Gazo, R., 

Haviarova, E., & Benes, B., 2019). The idea based on randomly picking a point within 
a confined wrapper around each clean input and then applying the multi-step IFGM in 
order to model adversarial data for the right input. 

There are some powerful gradient-based attacks known for today: 
 Elastic-Net attacks EAD based on the 𝐿𝐿. and 𝐿𝐿" distortion, where 𝑐𝑐𝑠𝑠	𝐿𝐿'-oriented 

adversarial example includes the state-of-the-art 𝐿𝐿.	attack in the particular case 
(Chang, T. J., He, Y., & Li, P., 2018). 

Another example based on the idea to use C&W algorithm on 𝐿𝐿. shows that the 
adversarial example can be generated as an interactive attack (Chen, P. Y., Sharma, 
Y., Zhang, H., Yi, J., & Hsieh, C. J., 2018; Carlini, N., & Wagner, D., 2017). The loss 
function was defined as 𝑙𝑙(𝑥𝑥!) = max	(max{𝑍𝑍(𝑥𝑥!)/: 𝑠𝑠 ≠ 𝑡𝑡} − 𝑍𝑍(𝑥𝑥!)0 , −𝑘𝑘) . As κ increases, 
the model classifies the adversarial example as increasingly more likely; this example 
was high-confidence adversarial. 

The third powerful gradient-based attack was described (Carlini, N., & Wagner, D., 
2017). The method based on PGD adversarial example with the "first-order adversary" 
represented as most vigorous attack utilizing the local first-order information about the 
network 

In the conclusion of the gradient-based attacks, the research shows that if an 
intruder can access to the model's gradients, they can craft a new fake-set of 
adversarial examples to trick the model. It proves that adversarial example is hard to 
be detected with classic methods – the type of security through obscurity aside is hard 
to defend against them. 

 
Backward Pass Differentiable approximation. 
Uses against the defender that mask the gradients, so approximation of 𝑓𝑓(𝑥𝑥) 

becomes a hard problem. In that case, attackers build the neural network from scratch 
by using the same train data as the classifier where he uses his gradients. The idea is 
simple: if the attacker cannot use the gradients, he creates the gradients. BPDA allows 
for attacking non-differentiable networks by approximating the gradients of the non-
differentiable layer. The gradient is estimated by computing the forward pass normally 
but replacing a non-differentiable layer 𝑓𝑓(∙) with a differentiable approximation ℎ(∙) ≈
𝑓𝑓(∙) on the backward pass.  

Assume that the transform 𝑓𝑓(𝑥𝑥) is simple; if data were altered too much, it would be 
hard to predict the correct label correctly. If a gradient from 𝑓𝑓(𝑥𝑥) is unattainable, then 
the attacker defines the network 𝑠𝑠(𝑥𝑥) and train the neural network to approximate 𝑓𝑓(𝑥𝑥). 
If 𝑠𝑠(𝑥𝑥)  approximates 𝑓𝑓(𝑥𝑥), then there is a problem to getting it is gradient and using it 
to replace the one that would come from 𝑓𝑓(𝑥𝑥) when running their optimizer.  

 
Defending strategies must rely on research methodologies, such as formal methods  

or empirical defenses  (Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A., 
2017; Chong, S., Guttman, J., Datta, A., Myers, A., et al., 2016; Voas, J., & Schaffer, 
K., 2016; Smith, W., 2019). Formal methods are a mathematical technique used to 
guarantee the robustness of software/ hardware systems. As applied to neural 
networks, state of the art formal method techniques today cannot verify a network more 
than a few layers deep. Unlike the formal methods, empirical defenses are relying on 
experiments to evaluate the effectiveness of a defense. There are some well-known 
strategies against adversarial attacks based on empirical methods: Adversarial 
training, Gradient Masking, Extra class, Input modification, Detection, and the Barrage 
of Random Transform BaRT. 

Adversarial Training 
This technique based on the idea that the defender trains the adversarial examples 

with the rest of the dataset. This method teaches the model to ignore noises and only 
learn it from the robust feature. 

The adversarial training has a disadvantage – it can only defend the model against 
the same attack used to craft examples included initially in the training pool. The 
increasing number of adversarial examples that defender adds to the training set 
creates another problem with the model's underfitting.  

In general, to describe the adversarial training the risk minimization (ERM) must 
be defined, where the aim is to minimize the risk over adversarial example 

ℎ ∗	= 𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠1∈ℋℍ(#,5!"#$)~7 Z max
89:%&'&#98";<

𝐿𝐿(ℎ(𝑥𝑥=>?), 𝑦𝑦0@AB) 	[ 

• ℎ	 ∈ ℋ:	target model 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡	𝜖𝜖	𝑤𝑤ℎ𝑏𝑏𝑎𝑎𝑏𝑏	-|𝑥𝑥=>? − 𝑥𝑥|-

"
≤ 𝜖𝜖	 

There is some variation of the adversarial training method:  Ensemble adversarial 
training, where the augments training data with perturbations transferred from other 
models (Oltramari, A., & Kott, A., 2018). 

Another method was proposed in by training the dataset via Spectral Normalization 
(Tramèr, F., Kurakin, A., Papernot, N., et al., 2017) 

The Barrage of Random Transform BaRT 
The Idea of BaRT technique based on modifying the image at the inference time 

(Farnia, F., Zhang, J. M., & Tse, D., 2018). This modifying includes the transformation 
such as blurring, noise adding, FFT Alteration,  Gaussian blur effects (Raff, E., 
Sylvester, J., Forsyth, S., & McLean, M., 2019). Moreover, this chain of transformation 
is done randomly. The following algorithm shows how BaRT is applied to the data: 

• Select a large number of transformations 

3. Defending strategies
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Fast Gradient Sign Method FGSM  
Google introduced this method (Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014). 

The attack is classified as a white box attack because the attacker Initially must have 
access to the training set. The Idea of FGSM based on the manipulation of the 
gradients of the loss for the input data in order to create the new data that can maximize 
the loss. The loss maximization must not be random but calculated in such a way to 
change the gradients onto the direction to misclassify a model. This kind of attack 
works well for images because it is hard to detect the little changes in images for the 
human eye, especially when only a few pixels are replaced.   

 In famous work, the researchers show that adding small noises to the original 
image of the panda causes the model to tag the image as a gibbon, with high accuracy 
(Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014).  

In this article, the classifier defined by the deep neural network (DNN) with the 
SoftMax output activation as 𝑦𝑦" = 𝑓𝑓(𝜃𝜃, 𝑥𝑥)  for a given data-label pair (x, y). FGSM 
identifies the adversarial data 𝑥𝑥"	by maximizing the loss 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) = 𝐿𝐿(𝑓𝑓(𝜃𝜃, 𝑥𝑥!), 𝑦𝑦)  subject 
to the 𝑙𝑙" perturbation constraint -|𝑥𝑥! − 𝑥𝑥|-

"
≤ 	𝜀𝜀 with 𝜀𝜀 to be the attack strength. Under 

the first-order approximation, i.e., 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) ≈ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) +	∇#𝐿𝐿(𝑥𝑥, 𝑦𝑦)$ ∙ (	𝑥𝑥" − x)  the 
adversarial data can be presented as 

𝑥𝑥" = 𝑥𝑥 + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇#𝐽𝐽(𝜃𝜃, 𝑥𝑥, 𝑦𝑦)), 
where  

• 𝑥𝑥": Adversarial data 
• 𝑥𝑥:  Original input data 
• y: Original input label 
• 𝜀𝜀: Multiplier  
• 𝜃𝜃: Model parameters 
• 𝐽𝐽: Loss 
There is also an extension of FGSM with additionally enhanced iterations IFGSM 

that can be defined as 
𝑥𝑥% = 𝑥𝑥%&' + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)), 

where 𝑚𝑚 = 1,… ,𝑀𝑀,  𝑥𝑥()) = 𝑥𝑥 and 𝑥𝑥! = 𝑥𝑥(+), with 𝑀𝑀 being the number of iterations, the 
targeted FGSM can mislead any CNN with ReLU activation to classify. This formula 
can be extended with an elementwise clipping function which clips each element 𝑥𝑥% 
of the input x into the range of [max(0, 𝑥𝑥% − 𝜀𝜀) ,min(1, 𝑥𝑥% + 𝜀𝜀)], 

𝑥𝑥% = 𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐 L𝑥𝑥%&' + 	𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠M𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)NO , 𝑥𝑥) = 𝑥𝑥, 
where the 𝑐𝑐 = ,

-
 . Typically, each component of the input vector, e.g., a pixel, is 

normalized within [0, 1]. 
Project Gradient Descent (PGD) attack is another type of IFGM (Wu, F., Gazo, R., 

Haviarova, E., & Benes, B., 2019). The idea based on randomly picking a point within 
a confined wrapper around each clean input and then applying the multi-step IFGM in 
order to model adversarial data for the right input. 

There are some powerful gradient-based attacks known for today: 
 Elastic-Net attacks EAD based on the 𝐿𝐿. and 𝐿𝐿" distortion, where 𝑐𝑐𝑠𝑠	𝐿𝐿'-oriented 

adversarial example includes the state-of-the-art 𝐿𝐿.	attack in the particular case 
(Chang, T. J., He, Y., & Li, P., 2018). 

Another example based on the idea to us e C&W algorithm on 𝐿𝐿. shows that the 
adversarial example can be generated as an interactive attack (Chen, P. Y., Sharma, 
Y., Zhang, H., Yi, J., & Hsieh, C. J., 2018; Carlini, N., & Wagner, D., 2017). The loss 
function was defined as 𝑙𝑙(𝑥𝑥!) = 𝑚𝑚𝑐𝑐𝑥𝑥	(𝑚𝑚𝑐𝑐𝑥𝑥{𝑍𝑍(𝑥𝑥!)/: 𝑠𝑠 ≠ 𝑡𝑡} − 𝑍𝑍(𝑥𝑥!)0 , −𝑘𝑘) . As κ increases, 
the model classifies the adversarial example as increasingly more likely; this example 
was high-confidence adversarial. 

The third powerful gradient-based attack was described (Carlini, N., & Wagner, D., 
2017). The method based on PGD adversarial example with the "first-order adversary" 
represented as most vigorous attack utilizing the local first-order information about the 
network 

In the conclusion of the gradient-based attacks, the research shows that if an 
intruder can access to the model's gradients, they can craft a new fake-set of 
adversarial examples to trick the model. It proves that adversarial example is hard to 
be detected with classic methods – the type of security through obscurity aside is hard 
to defend against them. 

 
Backward Pass Differentiable approximation. 
Uses against the defender that mask the gradients, so approximation of 𝑓𝑓(𝑥𝑥) 

becomes a hard problem. In that case, attackers build the neural network from scratch 
by using the same train data as the classifier where he uses his gradients. The idea is 
simple: if the attacker cannot use the gradients, he creates the gradients. BPDA allows 
for attacking non-differentiable networks by approximating the gradients of the non-
differentiable layer. The gradient is estimated by computing the forward pass normally 
but replacing a non-differentiable layer 𝑓𝑓(∙) with a differentiable approximation ℎ(∙) ≈
𝑓𝑓(∙) on the backward pass.  

Assume that the transform 𝑓𝑓(𝑥𝑥) is simple; if data were altered too much, it would be 
hard to predict the correct label correctly. If a gradient from 𝑓𝑓(𝑥𝑥) is unattainable, then 
the attacker defines the network 𝑠𝑠(𝑥𝑥) and train the neural network to approximate 𝑓𝑓(𝑥𝑥). 
If 𝑠𝑠(𝑥𝑥)  approximates 𝑓𝑓(𝑥𝑥), then there is a problem to getting it is gradient and using it 
to replace the one that would come from 𝑓𝑓(𝑥𝑥) when running their optimizer.  

 
Defending strategies must rely on research methodologies, such as formal methods  

or empirical defenses  (Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A., 
2017; Chong, S., Guttman, J., Datta, A., Myers, A., et al., 2016; Voas, J., & Schaffer, 
K., 2016; Smith, W., 2019). Formal methods are a mathematical technique used to 
guarantee the robustness of software/ hardware systems. As applied to neural 
networks, state of the art formal method techniques today cannot verify a network more 
than a few layers deep. Unlike the formal methods, empirical defenses are relying on 
experiments to evaluate the effectiveness of a defense. There are some well-known 
strategies against adversarial attacks based on empirical methods: Adversarial 
training, Gradient Masking, Extra class, Input modification, Detection, and the Barrage 
of Random Transform BaRT. 

Adversarial Training 
This technique based on the idea that the defender trains the adversarial examples 

with the rest of the dataset. This method teaches the model to ignore noises and only 
learn it from the robust feature. 

The adversarial training has a disadvantage – it can only defend the model against 
the same attack used to craft examples included initially in the training pool. The 
increasing number of adversarial examples that defender adds to the training set 
creates another problem with the model's underfitting.  

In general, to describe the adversarial training the risk minimization (ERM) must 
be defined, where the aim is to minimize the risk over adversarial example 

ℎ ∗	= 𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠1∈ℋℍ(#,5!"#$)~7 Z max
89:%&'&#98";<

𝐿𝐿(ℎ(𝑥𝑥=>?), 𝑦𝑦0@AB) 	[, 

• ℎ	 ∈ ℋ:	target model, 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡	𝜖𝜖	𝑤𝑤ℎ𝑏𝑏𝑎𝑎𝑏𝑏	-|𝑥𝑥=>? − 𝑥𝑥|-

"
≤ 𝜖𝜖. 

There is some variation of the adversarial training method:  Ensemble adversarial 
training, where the augments training data with perturbations transferred from other 
models (Oltramari, A., & Kott, A., 2018). 

Another method was proposed in by training the dataset via Spectral Normalization 
(Tramèr, F., Kurakin, A., Papernot, N., et al., 2017) 

The Barrage of Random Transform BaRT 
The Idea of BaRT technique based on modifying the image at the inference time 

(Farnia, F., Zhang, J. M., & Tse, D., 2018). This modifying includes the transformation 
such as blurring, noise adding, FFT Alteration,  Gaussian blur effects (Raff, E., 
Sylvester, J., Forsyth, S., & McLean, M., 2019). Moreover, this chain of transformation 
is done randomly. The following algorithm shows how BaRT is applied to the data: 

• Select a large number of transformations 

Fast Gradient Sign Method FGSM  
Google introduced this method (Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014). 

The attack is classified as a white box attack because the attacker Initially must have 
access to the training set. The Idea of FGSM based on the manipulation of the 
gradients of the loss for the input data in order to create the new data that can maximize 
the loss. The loss maximization must not be random but calculated in such a way to 
change the gradients onto the direction to misclassify a model. This kind of attack 
works well for images because it is hard to detect the little changes in images for the 
human eye, especially when only a few pixels are replaced.   

 In famous work, the researchers show that adding small noises to the original 
image of the panda causes the model to tag the image as a gibbon, with high accuracy 
(Goodfellow, I. J., Shlens, J., & Szegedy, C., 2014).  

In this article, the classifier defined by the deep neural network (DNN) with the 
SoftMax output activation as 𝑦𝑦" = 𝑓𝑓(𝜃𝜃, 𝑥𝑥)  for a given data-label pair (x, y). FGSM 
identifies the adversarial data 𝑥𝑥"	by maximizing the loss 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) = 𝐿𝐿(𝑓𝑓(𝜃𝜃, 𝑥𝑥!), 𝑦𝑦)  subject 
to the 𝑙𝑙" perturbation constraint -|𝑥𝑥! − 𝑥𝑥|-

"
≤ 	𝜀𝜀 with 𝜀𝜀 to be the attack strength. Under 

the first-order approximation, i.e., 𝐿𝐿(	𝑥𝑥", 𝑦𝑦) ≈ 𝐿𝐿(𝑥𝑥, 𝑦𝑦) +	∇#𝐿𝐿(𝑥𝑥, 𝑦𝑦)$ ∙ (	𝑥𝑥" − x)  the 
adversarial data can be presented as 

𝑥𝑥" = 𝑥𝑥 + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∇#𝐽𝐽(𝜃𝜃, 𝑥𝑥, 𝑦𝑦)), 
where  

• 𝑥𝑥": Adversarial data 
• 𝑥𝑥:  Original input data 
• y: Original input label 
• 𝜀𝜀: Multiplier  
• 𝜃𝜃: Model parameters 
• 𝐽𝐽: Loss 
There is also an extension of FGSM with additionally enhanced iterations IFGSM 

that can be defined as 
𝑥𝑥% = 𝑥𝑥%&' + 	𝜀𝜀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)), 

where 𝑚𝑚 = 1,… ,𝑀𝑀,  𝑥𝑥()) = 𝑥𝑥 and 𝑥𝑥! = 𝑥𝑥(+), with 𝑀𝑀 being the number of iterations, the 
targeted FGSM can mislead any CNN with ReLU activation to classify. This formula 
can be extended with an elementwise clipping function which clips each element 𝑥𝑥% 
of the input x into the range of [max(0, 𝑥𝑥% − 𝜀𝜀) ,min(1, 𝑥𝑥% + 𝜀𝜀)], 

𝑥𝑥% = 𝑐𝑐𝑙𝑙𝑐𝑐𝑚𝑚𝑐𝑐 L𝑥𝑥%&' + 	𝑐𝑐 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠M𝛻𝛻#	𝐽𝐽(𝜃𝜃, 𝑥𝑥%&', 𝑦𝑦)NO , 𝑥𝑥) = 𝑥𝑥, 
where the 𝑐𝑐 = ,

-
 . Typically, each component of the input vector, e.g., a pixel, is 

normalized within [0, 1]. 
Project Gradient Descent (PGD) attack is another type of IFGM (Wu, F., Gazo, R., 

Haviarova, E., & Benes, B., 2019). The idea based on randomly picking a point within 
a confined wrapper around each clean input and then applying the multi-step IFGM in 
order to model adversarial data for the right input. 

There are some powerful gradient-based attacks known for today: 
 Elastic-Net attacks EAD based on the 𝐿𝐿. and 𝐿𝐿" distortion, where 𝑐𝑐𝑠𝑠	𝐿𝐿'-oriented 

adversarial example includes the state-of-the-art 𝐿𝐿.	attack in the particular case 
(Chang, T. J., He, Y., & Li, P., 2018). 

Another example based on the idea to us e C&W algorithm on 𝐿𝐿. shows that the 
adversarial example can be generated as an interactive attack (Chen, P. Y., Sharma, 
Y., Zhang, H., Yi, J., & Hsieh, C. J., 2018; Carlini, N., & Wagner, D., 2017). The loss 
function was defined as 𝑙𝑙(𝑥𝑥!) = 𝑚𝑚𝑐𝑐𝑥𝑥	(𝑚𝑚𝑐𝑐𝑥𝑥{𝑍𝑍(𝑥𝑥!)/: 𝑠𝑠 ≠ 𝑡𝑡} − 𝑍𝑍(𝑥𝑥!)0 , −𝑘𝑘) . As κ increases, 
the model classifies the adversarial example as increasingly more likely; this example 
was high-confidence adversarial. 

The third powerful gradient-based attack was described (Carlini, N., & Wagner, D., 
2017). The method based on PGD adversarial example with the "first-order adversary" 
represented as most vigorous attack utilizing the local first-order information about the 
network 

In the conclusion of the gradient-based attacks, the research shows that if an 
intruder can access to the model's gradients, they can craft a new fake-set of 
adversarial examples to trick the model. It proves that adversarial example is hard to 
be detected with classic methods – the type of security through obscurity aside is hard 
to defend against them. 

 
Backward Pass Differentiable approximation. 
Uses against the defender that mask the gradients, so approximation of 𝑓𝑓(𝑥𝑥) 

becomes a hard problem. In that case, attackers build the neural network from scratch 
by using the same train data as the classifier where he uses his gradients. The idea is 
simple: if the attacker cannot use the gradients, he creates the gradients. BPDA allows 
for attacking non-differentiable networks by approximating the gradients of the non-
differentiable layer. The gradient is estimated by computing the forward pass normally 
but replacing a non-differentiable layer 𝑓𝑓(∙) with a differentiable approximation ℎ(∙) ≈
𝑓𝑓(∙) on the backward pass.  

Assume that the transform 𝑓𝑓(𝑥𝑥) is simple; if data were altered too much, it would be 
hard to predict the correct label correctly. If a gradient from 𝑓𝑓(𝑥𝑥) is unattainable, then 
the attacker defines the network 𝑠𝑠(𝑥𝑥) and train the neural network to approximate 𝑓𝑓(𝑥𝑥). 
If 𝑠𝑠(𝑥𝑥)  approximates 𝑓𝑓(𝑥𝑥), then there is a problem to getting it is gradient and using it 
to replace the one that would come from 𝑓𝑓(𝑥𝑥) when running their optimizer.  

 
Defending strategies must rely on research methodologies, such as formal methods  

or empirical defenses  (Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A., 
2017; Chong, S., Guttman, J., Datta, A., Myers, A., et al., 2016; Voas, J., & Schaffer, 
K., 2016; Smith, W., 2019). Formal methods are a mathematical technique used to 
guarantee the robustness of software/ hardware systems. As applied to neural 
networks, state of the art formal method techniques today cannot verify a network more 
than a few layers deep. Unlike the formal methods, empirical defenses are relying on 
experiments to evaluate the effectiveness of a defense. There are some well-known 
strategies against adversarial attacks based on empirical methods: Adversarial 
training, Gradient Masking, Extra class, Input modification, Detection, and the Barrage 
of Random Transform BaRT. 

Adversarial Training 
This technique based on the idea that the defender trains the adversarial examples 

with the rest of the dataset. This method teaches the model to ignore noises and only 
learn it from the robust feature. 

The adversarial training has a disadvantage – it can only defend the model against 
the same attack used to craft examples included initially in the training pool. The 
increasing number of adversarial examples that defender adds to the training set 
creates another problem with the model's underfitting.  

In general, to describe the adversarial training the risk minimization (ERM) must 
be defined, where the aim is to minimize the risk over adversarial example 

ℎ ∗	= 𝑐𝑐𝑎𝑎𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠1∈ℋℍ(#,5!"#$)~7 Z max
89:%&'&#98";<

𝐿𝐿(ℎ(𝑥𝑥=>?), 𝑦𝑦0@AB) 	[, 

• ℎ	 ∈ ℋ:	target model, 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑡𝑡	𝜖𝜖	𝑤𝑤ℎ𝑏𝑏𝑎𝑎𝑏𝑏	-|𝑥𝑥=>? − 𝑥𝑥|-

"
≤ 𝜖𝜖. 

There is some variation of the adversarial training method:  Ensemble adversarial 
training, where the augments training data with perturbations transferred from other 
models (Oltramari, A., & Kott, A., 2018). 

Another method was proposed in by training the dataset via Spectral Normalization 
(Tramèr, F., Kurakin, A., Papernot, N., et al., 2017) 

The Barrage of Random Transform BaRT 
The Idea of BaRT technique based on modifying the image at the inference time 

(Farnia, F., Zhang, J. M., & Tse, D., 2018). This modifying includes the transformation 
such as blurring, noise adding, FFT Alteration,  Gaussian blur effects (Raff, E., 
Sylvester, J., Forsyth, S., & McLean, M., 2019). Moreover, this chain of transformation 
is done randomly. The following algorithm shows how BaRT is applied to the data: 

• Select a large number of transformations 

Fig. 1: Adversarial Attack

• Select a large number of transformations;
• Tune each of the transformations randomly;
• Select a subset of transformations to apply them for the input;
• Produce the transforming in random order.
Experience showed that, even after recalculating the adversarial gradients, the 

Barrage of Random Transforms (BaRT) is one of the most powerful defense methods, 
even the most severe attacks, such as PGD.
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Fig. 2. BaRT performance

The figure above shows that the number of transformations dramatically drops the 
success of the adversarial attack.

.4. Combined technique with parallel computation and detection process on hpc
The usage of HPC for face detection in crowded places where all detection 

processes are done in parallel is at risk of adversarial attacks. The data is streamed 
continuously, and the training processes must be handled continuously. In such 
complicated systems, detection and adversarial training processes on HPC are done 
in partitioned forms. Two strategies must be balanced in order to achieve efficient 
work. 

Distributed detection strategy:
The distributed approach based on the separation of concerns conception with 

the space of multiple HPC processes where each process uses one entity of trained 
neuron network in order to detect only one adversarial attack. The advantage of 
the distribution strategy is that detection agents (processes) use lightweight neural 
networks that detect and trained fast. However, detection is done in a round-robin way 
where each agent that responsible for the different adversarial attacks must check the 
same object.

Clone agent strategy:
This approach is based on an overloaded neural network that can detect multiple 

adversarial attacks. The advantage of this approach is to use the copies of the same 
process scan objects only once, without repeating. The disadvantage of such an 
approach is the risk of the model’s overfitting. 

 Another advantage of HPC in adversarial learning is the ability to parallelize 
the process of training. Some adversarial methods such as MAT (A Multi-strength 
Adversarial Training Method to Mitigate Adversarial Attacks) combines the effect of 
multiple adversarial strength has parallel computation version which called a parallel 
MAT it consists of multiple neural networks and summarized in upper-boundary 
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Fig. 3: Parallel training efficiency on HPC

decision unit (Naidu, V. P. S., 2011). Each of these neural networks can be trained in 
parallel on HPC. One approach is to use the parallelizing backpropagation of neural 
network with MapReduce and cascading model (Song, C., Cheng, H. P., Yang, H., Li, 
S., et al., 2018).

The efficiency of parallelism of the neural network, as well as any other parallel 
computation process, is calculated by Amdahl’s law and High-Performance Conjugate 
Gradients (HPCG) (Liu, Y., Jing, W., & Xu, L., 2016; Amdahl, G. M., 1967). The efficiency 
of parallel backpropagated neural network CBPNN against standalone, standalone 
BPNN shown in the figure above.

5. Conclusion
This paper attempted to describe the state-of-the-art studies for adversarial 

examples from the attacker and defender perspective in the deep learning domain. 
The threat of adversarial attacks is increasing, but there are few defense methods. 
The defending strategies against adversarial attacks, which were mentioned above, 
include training phases that take time to adapt the system for new adversarial attacks. 
The attacker might use not only one, but the set of attacking models to trick the system 
while adversarial training runs at the background. One way to solve this problem is to 
parallelize the adversarial training process against a single attacking model; another 
way is to use ensemble methods, including horizontal and vertical strategy. These 
issues force the use of powerful server-based HPC systems to respond to the next 
attack quickly. The impact of HPC so solve computational problems is growing in many 
fields (Ismayilova, N., & Ismayilov, E., 2018). According to, the growth of computational 
power and AI-based systems causes an increase in the number of adversarial based 
attack techniques. This trend will continue to grow. Defenders must react to this 
problem before and take action at the time before the attacker damages a system.
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