
126

Abstract
Distributed exascale computing systems are the idea of the 
HPC systems, that capable to perform one exaflop operations 
per second in dynamic and interactive nature without central 
managers. In such environment, each node should manage 
its own load itself and it should be found the basic rules of 
load distribution for all nodes because of being able to 
optimize the load distribution without central managers. In this 
paper proposed oscillation model for load distribution in fully 
distributed exascale systems and defined some parameters 
for this model and mentioned about feature works.

Keywords: Distributed Exascale Computing system, Load 
Balancing, Dynamic and Interactive Nature, Load distribution 
model

Defining Parameters for the Oscillation Model 
of Load Flow of Global Activities in a Fully 
Distributed Exascale System
Ulphat Bakhishov
Azerbaijan State Oil and Industry University, Baku, Azerbaijan, ulfet_bakhishoff@hotmil.com

*Correspondence: 
Ulphat Bakhishov, 

Azerbaijan State Oil 
and Industry University, 
Baku, Azerbaijan, ulfet_
bakhishoff@hotmil.com

1. Introduction 
High-performance computing (HPC) systems designed based on distributed 

resources for performing computationally intensive operations (Pereira, E. P., Padoin, 
E. L., Medina, R. D., & Méhaut, J. F., 2020, July). The HPC systems have a module 
called a load balancer that serves to distribute the computing load over resources 
(Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018). 
The aim of this module is to set the resource attributes against the process 
requirements (Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & 
Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, 
A. R., 2020). The HPC process is the smallest parallelizable part of whole application 
running on HPC system. The purpose of the load balancer is to create an optimal match 
between process requirements and resource attributes so that no process should be 
left in the queue and all resources should be loaded to the maximum (Khaneghah, E. 
M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., 
Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R., 2020). This rule defined with 
the following formula: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: .𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (1) 
Therefore 

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡./,01%2)&%3$)%/( =

⎣
⎢
⎢
⎢
⎡:∄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22 ∴⏞

*/	6",(2
∋ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9B

𝑎𝑎𝑎𝑎𝑎𝑎
.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒:-)%;%)< = 100%2 ⎦

⎥
⎥
⎥
⎤
 (2) 

Here the resource space is a union of set of resources of the nodes where the 
resource can be in following types: File, Memory, I/O, Processor. The process 
requirement is a requirement of HPC process for resources (Shahrabi, S., Mollasalehi, 
F., Aliev, A. R., & Mousavi, E., 2018). HPC process scheduling is the overall queue of 
HPC processes. So, the basic goal for load distribution is creating mapping between 
process requirements and resource attributes, and the best state of load distribution 
is that any HPC process should not be in HPC process schedule, and each active 
resource should be loaded 100%.  

Traditional distributed computing systems are based on a pre-defined problem-
technical accounting (PTA) (Ismayilova, N. T., 2020). In such systems, for achieving 
the goal defined in the equation (2), the load balancer configures and starts the system 
according to pre-defined process requirements. 

However, it is not possible to prepare a PTA for the issues of the twenty-first century. 
Thus, dynamic, and interactive events can occur in an unforeseen manner during the 
runtime of the system. There are three types of dynamic and interactive processes 
(Khaneghah, E. M., & Sharifi, M., 2014): 

One process during execution can create another process that is not planned 
previously; 

Processes may be interconnected in an unforeseen manner. These processes can 
be any of the ones that were initially defined and created later; 

Processes may interact with the system environment in an unforeseen manner. 
Thus, the resource requirements of the process may be changed. 

In all three cases, there can be resource requirements that are not considered at 
the start of the system, which brings the load balancer to the unknown state. To avoid 
this problem, dynamic and interactive events should be considered in the equation (1). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ∶

.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦-/(0%)%/(2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (3) 
So, the load distribution process depends on dynamic and interactive events, and 

it should create a mapping between global activities and resource attributes as well as 
mapping between process requirements and resource attributes. Here, the global 
activities are process requirements that locally cannot be fulfilled (Khaneghah, E. M., 
2017). 

For handling the global activity conditions, it needed to restart the load balancer, 
considering previously unforeseen resource requirements. However, in this case, it 
should "try" to change the response structure for unknown resource requirements. 
Thus, the load balancer should either find a new resource to meet the demand for an 
unknown resource with activating resource discovery module (Rezaei, S., Khaneghah, 
E. M., & Aliev, A. R., 2020; Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E., 
2018; Adibi, E., & Khaneghah, E. M., 2018) and migrate the process to relevant 
resource (Sohrabi, Z., & Khaneghah, E. M., 2020), or replace the unknown resource 
requirement with known resource requirements (Khaneghah, E. M., Mollasalehi, F., 
Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Khaneghah, E. M., & Sharifi, M., 
2014). 

 
2. Related works 
In (Khaneghah, E. M., & Sharifi, M., 2014), the model based on vector algebra 

suggested for implementing load distribution in dynamic and interactive environment. 
For that model, there is a general state vector. Over the time this vector changes. For 
each executed process, if this vector changes, the load balancer tries to solve two 
problems: value disorder and direction disorder. Value disorder means the direction of 
the vector that defines the difference between two states of the system is same as 
direction of the general state vector, but values are different. If directions are different, 
it means the direction disorder has occurred. Solving these two problems allows to 
reconfigure a distributed exascale computing system during dynamic and interactive 
events in runtime. However, it is difficult to determine the state vector of the system 
and the new state vector after dynamic and interactive events occur. 

In (Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, 
A. R., & Showkatabadi, A. R., 2020) proposed a model based on discrete time Hidden 
Markov Model. For this model, the system should not consider a dynamic and 
interactive event itself, but consider system state instead, which the system reached 
after dynamic and interactive event has occurred. The load distribution function choses 
the best system state configuration for current state based on learned historical states 
of the system. This model does not suggest changing resource request, instead it 
suggests reconfiguring load distribution. Implementing this model, gives opportunity 
to learn possible states and find best configuration for new state after dynamic and 
interactive event has occurred. The main problem for implementing this model is that, 
the model needs to learn the system after each change of system state and need to 
store many historical data about each system state changes. 

In (Bakhishov, U., 2019), the oscillation concept of load distribution is defined. For 
this concept each global activity should move over the nodes of the system until 
reaching capable node for that process. But the parameters of oscillation are not 
defined based on process requirements and resource attributes. Also, the optimization 
is needed for movement of process over the nodes of the system. 

 
3. Proposed model 
As seen in equation (3), global activities should be considered while load 

distribution as well as local process requirements. Global activities are raised based 
on a sender-initiated load distribution strategy (Mirtaheri, S. L., & Grandinetti, L., 2017) 
by nodes that are in imbalanced (Bakhishov, U., 2019). The requirements of the global 
activities which are assigned to the node and local process requirements should be 
merged. If this set named as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9, then the requirements of the global 
activities raised form current node should be excluded from 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9. If this 
excluded set named as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9, it can be given the following definition: 

𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9  (4) 
In period the processes in global process scheduling should assign back to local 

machine. In traditional manner, the HPC system starts working with predefined load. 
Let’s assume that this system has single node which has no available resource. In 

this state all load in local process scheduling will move into global process scheduling. 
But, due to lack of another resource all processes in global process scheduling will 
move back to local process scheduling in a period (Fig. 1). 

Figure 1 defines load flow between local and global process scheduling. Because 
of there is no change in amount of load in period, the process will continue periodically. 
If the state with an empty local and global process scheduling assumed as initial state, 
replacement of the workload to opposite sides – local process scheduling and global 
process scheduling – around initial state, is the oscillation process. And if the amount 

Azerbaijan Journal of High Performance Computing, Vol 4, Issue 1, 2021, pp. 126-131
https://doi.org/10.32010/26166127.2021.4.1.126.131



127

1. Introduction 
High-performance computing (HPC) systems designed based on distributed 

resources for performing computationally intensive operations (Pereira, E. P., Padoin, 
E. L., Medina, R. D., & Méhaut, J. F., 2020, July). The HPC systems have a module 
called a load balancer that serves to distribute the computing load over resources 
(Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018). 
The aim of this module is to set the resource attributes against the process 
requirements (Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & 
Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, 
A. R., 2020). The HPC process is the smallest parallelizable part of whole application 
running on HPC system. The purpose of the load balancer is to create an optimal match 
between process requirements and resource attributes so that no process should be 
left in the queue and all resources should be loaded to the maximum (Khaneghah, E. 
M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., 
Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R., 2020). This rule defined with 
the following formula: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: .𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (1) 
Therefore 

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡./,01%2)&%3$)%/( =

⎣
⎢
⎢
⎢
⎡:∄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22 ∴⏞

*/	6",(2
∋ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9B

𝑎𝑎𝑎𝑎𝑎𝑎
.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒:-)%;%)< = 100%2 ⎦

⎥
⎥
⎥
⎤
 (2) 

Here the resource space is a union of set of resources of the nodes where the 
resource can be in following types: File, Memory, I/O, Processor. The process 
requirement is a requirement of HPC process for resources (Shahrabi, S., Mollasalehi, 
F., Aliev, A. R., & Mousavi, E., 2018). HPC process scheduling is the overall queue of 
HPC processes. So, the basic goal for load distribution is creating mapping between 
process requirements and resource attributes, and the best state of load distribution 
is that any HPC process should not be in HPC process schedule, and each active 
resource should be loaded 100%.  

Traditional distributed computing systems are based on a pre-defined problem-
technical accounting (PTA) (Ismayilova, N. T., 2020). In such systems, for achieving 
the goal defined in the equation (2), the load balancer configures and starts the system 
according to pre-defined process requirements. 

However, it is not possible to prepare a PTA for the issues of the twenty-first century. 
Thus, dynamic, and interactive events can occur in an unforeseen manner during the 
runtime of the system. There are three types of dynamic and interactive processes 
(Khaneghah, E. M., & Sharifi, M., 2014): 

One process during execution can create another process that is not planned 
previously; 

Processes may be interconnected in an unforeseen manner. These processes can 
be any of the ones that were initially defined and created later; 

Processes may interact with the system environment in an unforeseen manner. 
Thus, the resource requirements of the process may be changed. 

In all three cases, there can be resource requirements that are not considered at 
the start of the system, which brings the load balancer to the unknown state. To avoid 
this problem, dynamic and interactive events should be considered in the equation (1). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ∶

.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦-/(0%)%/(2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (3) 
So, the load distribution process depends on dynamic and interactive events, and 

it should create a mapping between global activities and resource attributes as well as 
mapping between process requirements and resource attributes. Here, the global 
activities are process requirements that locally cannot be fulfilled (Khaneghah, E. M., 
2017). 

For handling the global activity conditions, it needed to restart the load balancer, 
considering previously unforeseen resource requirements. However, in this case, it 
should "try" to change the response structure for unknown resource requirements. 
Thus, the load balancer should either find a new resource to meet the demand for an 
unknown resource with activating resource discovery module (Rezaei, S., Khaneghah, 
E. M., & Aliev, A. R., 2020; Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E., 
2018; Adibi, E., & Khaneghah, E. M., 2018) and migrate the process to relevant 
resource (Sohrabi, Z., & Khaneghah, E. M., 2020), or replace the unknown resource 
requirement with known resource requirements (Khaneghah, E. M., Mollasalehi, F., 
Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Khaneghah, E. M., & Sharifi, M., 
2014). 

 
2. Related works 
In (Khaneghah, E. M., & Sharifi, M., 2014), the model based on vector algebra 

suggested for implementing load distribution in dynamic and interactive environment. 
For that model, there is a general state vector. Over the time this vector changes. For 
each executed process, if this vector changes, the load balancer tries to solve two 
problems: value disorder and direction disorder. Value disorder means the direction of 
the vector that defines the difference between two states of the system is same as 
direction of the general state vector, but values are different. If directions are different, 
it means the direction disorder has occurred. Solving these two problems allows to 
reconfigure a distributed exascale computing system during dynamic and interactive 
events in runtime. However, it is difficult to determine the state vector of the system 
and the new state vector after dynamic and interactive events occur. 

In (Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, 
A. R., & Showkatabadi, A. R., 2020) proposed a model based on discrete time Hidden 
Markov Model. For this model, the system should not consider a dynamic and 
interactive event itself, but consider system state instead, which the system reached 
after dynamic and interactive event has occurred. The load distribution function choses 
the best system state configuration for current state based on learned historical states 
of the system. This model does not suggest changing resource request, instead it 
suggests reconfiguring load distribution. Implementing this model, gives opportunity 
to learn possible states and find best configuration for new state after dynamic and 
interactive event has occurred. The main problem for implementing this model is that, 
the model needs to learn the system after each change of system state and need to 
store many historical data about each system state changes. 

In (Bakhishov, U., 2019), the oscillation concept of load distribution is defined. For 
this concept each global activity should move over the nodes of the system until 
reaching capable node for that process. But the parameters of oscillation are not 
defined based on process requirements and resource attributes. Also, the optimization 
is needed for movement of process over the nodes of the system. 

 
3. Proposed model 
As seen in equation (3), global activities should be considered while load 

distribution as well as local process requirements. Global activities are raised based 
on a sender-initiated load distribution strategy (Mirtaheri, S. L., & Grandinetti, L., 2017) 
by nodes that are in imbalanced (Bakhishov, U., 2019). The requirements of the global 
activities which are assigned to the node and local process requirements should be 
merged. If this set named as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9, then the requirements of the global 
activities raised form current node should be excluded from 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9. If this 
excluded set named as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9, it can be given the following definition: 

𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9  (4) 
In period the processes in global process scheduling should assign back to local 

machine. In traditional manner, the HPC system starts working with predefined load. 
Let’s assume that this system has single node which has no available resource. In 

this state all load in local process scheduling will move into global process scheduling. 
But, due to lack of another resource all processes in global process scheduling will 
move back to local process scheduling in a period (Fig. 1). 

Figure 1 defines load flow between local and global process scheduling. Because 
of there is no change in amount of load in period, the process will continue periodically. 
If the state with an empty local and global process scheduling assumed as initial state, 
replacement of the workload to opposite sides – local process scheduling and global 
process scheduling – around initial state, is the oscillation process. And if the amount 

Azerbaijan Journal of High Performance Computing, 4 (1), 2021



128

1. Introduction 
High-performance computing (HPC) systems designed based on distributed 

resources for performing computationally intensive operations (Pereira, E. P., Padoin, 
E. L., Medina, R. D., & Méhaut, J. F., 2020, July). The HPC systems have a module 
called a load balancer that serves to distribute the computing load over resources 
(Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018). 
The aim of this module is to set the resource attributes against the process 
requirements (Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & 
Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, 
A. R., 2020). The HPC process is the smallest parallelizable part of whole application 
running on HPC system. The purpose of the load balancer is to create an optimal match 
between process requirements and resource attributes so that no process should be 
left in the queue and all resources should be loaded to the maximum (Khaneghah, E. 
M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., 
Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R., 2020). This rule defined with 
the following formula: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: .𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (1) 
Therefore 

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡./,01%2)&%3$)%/( =

⎣
⎢
⎢
⎢
⎡:∄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22 ∴⏞

*/	6",(2
∋ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9B

𝑎𝑎𝑎𝑎𝑎𝑎
.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒:-)%;%)< = 100%2 ⎦

⎥
⎥
⎥
⎤
 (2) 

Here the resource space is a union of set of resources of the nodes where the 
resource can be in following types: File, Memory, I/O, Processor. The process 
requirement is a requirement of HPC process for resources (Shahrabi, S., Mollasalehi, 
F., Aliev, A. R., & Mousavi, E., 2018). HPC process scheduling is the overall queue of 
HPC processes. So, the basic goal for load distribution is creating mapping between 
process requirements and resource attributes, and the best state of load distribution 
is that any HPC process should not be in HPC process schedule, and each active 
resource should be loaded 100%.  

Traditional distributed computing systems are based on a pre-defined problem-
technical accounting (PTA) (Ismayilova, N. T., 2020). In such systems, for achieving 
the goal defined in the equation (2), the load balancer configures and starts the system 
according to pre-defined process requirements. 

However, it is not possible to prepare a PTA for the issues of the twenty-first century. 
Thus, dynamic, and interactive events can occur in an unforeseen manner during the 
runtime of the system. There are three types of dynamic and interactive processes 
(Khaneghah, E. M., & Sharifi, M., 2014): 

One process during execution can create another process that is not planned 
previously; 

Processes may be interconnected in an unforeseen manner. These processes can 
be any of the ones that were initially defined and created later; 

Processes may interact with the system environment in an unforeseen manner. 
Thus, the resource requirements of the process may be changed. 

In all three cases, there can be resource requirements that are not considered at 
the start of the system, which brings the load balancer to the unknown state. To avoid 
this problem, dynamic and interactive events should be considered in the equation (1). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ∶

.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦-/(0%)%/(2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (3) 
So, the load distribution process depends on dynamic and interactive events, and 

it should create a mapping between global activities and resource attributes as well as 
mapping between process requirements and resource attributes. Here, the global 
activities are process requirements that locally cannot be fulfilled (Khaneghah, E. M., 
2017). 

For handling the global activity conditions, it needed to restart the load balancer, 
considering previously unforeseen resource requirements. However, in this case, it 
should "try" to change the response structure for unknown resource requirements. 
Thus, the load balancer should either find a new resource to meet the demand for an 
unknown resource with activating resource discovery module (Rezaei, S., Khaneghah, 
E. M., & Aliev, A. R., 2020; Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E., 
2018; Adibi, E., & Khaneghah, E. M., 2018) and migrate the process to relevant 
resource (Sohrabi, Z., & Khaneghah, E. M., 2020), or replace the unknown resource 
requirement with known resource requirements (Khaneghah, E. M., Mollasalehi, F., 
Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Khaneghah, E. M., & Sharifi, M., 
2014). 

 
2. Related works 
In (Khaneghah, E. M., & Sharifi, M., 2014), the model based on vector algebra 

suggested for implementing load distribution in dynamic and interactive environment. 
For that model, there is a general state vector. Over the time this vector changes. For 
each executed process, if this vector changes, the load balancer tries to solve two 
problems: value disorder and direction disorder. Value disorder means the direction of 
the vector that defines the difference between two states of the system is same as 
direction of the general state vector, but values are different. If directions are different, 
it means the direction disorder has occurred. Solving these two problems allows to 
reconfigure a distributed exascale computing system during dynamic and interactive 
events in runtime. However, it is difficult to determine the state vector of the system 
and the new state vector after dynamic and interactive events occur. 

In (Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, 
A. R., & Showkatabadi, A. R., 2020) proposed a model based on discrete time Hidden 
Markov Model. For this model, the system should not consider a dynamic and 
interactive event itself, but consider system state instead, which the system reached 
after dynamic and interactive event has occurred. The load distribution function choses 
the best system state configuration for current state based on learned historical states 
of the system. This model does not suggest changing resource request, instead it 
suggests reconfiguring load distribution. Implementing this model, gives opportunity 
to learn possible states and find best configuration for new state after dynamic and 
interactive event has occurred. The main problem for implementing this model is that, 
the model needs to learn the system after each change of system state and need to 
store many historical data about each system state changes. 

In (Bakhishov, U., 2019), the oscillation concept of load distribution is defined. For 
this concept each global activity should move over the nodes of the system until 
reaching capable node for that process. But the parameters of oscillation are not 
defined based on process requirements and resource attributes. Also, the optimization 
is needed for movement of process over the nodes of the system. 

 
3. Proposed model 
As seen in equation (3), global activities should be considered while load 

distribution as well as local process requirements. Global activities are raised based 
on a sender-initiated load distribution strategy (Mirtaheri, S. L., & Grandinetti, L., 2017) 
by nodes that are in imbalanced (Bakhishov, U., 2019). The requirements of the global 
activities which are assigned to the node and local process requirements should be 
merged. If this set named as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9, then the requirements of the global 
activities raised form current node should be excluded from 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9. If this 
excluded set named as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9, it can be given the following definition: 

𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9  (4) 
In period the processes in global process scheduling should assign back to local 

machine. In traditional manner, the HPC system starts working with predefined load. 
Let’s assume that this system has single node which has no available resource. In 

this state all load in local process scheduling will move into global process scheduling. 
But, due to lack of another resource all processes in global process scheduling will 
move back to local process scheduling in a period (Fig. 1). 

Figure 1 defines load flow between local and global process scheduling. Because 
of there is no change in amount of load in period, the process will continue periodically. 
If the state with an empty local and global process scheduling assumed as initial state, 
replacement of the workload to opposite sides – local process scheduling and global 
process scheduling – around initial state, is the oscillation process. And if the amount 

Fig. 1. Load flow process

Ulphat Bakhishov



129

1. Introduction 
High-performance computing (HPC) systems designed based on distributed 

resources for performing computationally intensive operations (Pereira, E. P., Padoin, 
E. L., Medina, R. D., & Méhaut, J. F., 2020, July). The HPC systems have a module 
called a load balancer that serves to distribute the computing load over resources 
(Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018). 
The aim of this module is to set the resource attributes against the process 
requirements (Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & 
Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, 
A. R., 2020). The HPC process is the smallest parallelizable part of whole application 
running on HPC system. The purpose of the load balancer is to create an optimal match 
between process requirements and resource attributes so that no process should be 
left in the queue and all resources should be loaded to the maximum (Khaneghah, E. 
M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., 
Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R., 2020). This rule defined with 
the following formula: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿: .𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (1) 
Therefore 

𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡./,01%2)&%3$)%/( =

⎣
⎢
⎢
⎢
⎡:∄𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22 ∴⏞

*/	6",(2
∋ 𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9B

𝑎𝑎𝑎𝑎𝑎𝑎
.𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒:-)%;%)< = 100%2 ⎦

⎥
⎥
⎥
⎤
 (2) 

Here the resource space is a union of set of resources of the nodes where the 
resource can be in following types: File, Memory, I/O, Processor. The process 
requirement is a requirement of HPC process for resources (Shahrabi, S., Mollasalehi, 
F., Aliev, A. R., & Mousavi, E., 2018). HPC process scheduling is the overall queue of 
HPC processes. So, the basic goal for load distribution is creating mapping between 
process requirements and resource attributes, and the best state of load distribution 
is that any HPC process should not be in HPC process schedule, and each active 
resource should be loaded 100%.  

Traditional distributed computing systems are based on a pre-defined problem-
technical accounting (PTA) (Ismayilova, N. T., 2020). In such systems, for achieving 
the goal defined in the equation (2), the load balancer configures and starts the system 
according to pre-defined process requirements. 

However, it is not possible to prepare a PTA for the issues of the twenty-first century. 
Thus, dynamic, and interactive events can occur in an unforeseen manner during the 
runtime of the system. There are three types of dynamic and interactive processes 
(Khaneghah, E. M., & Sharifi, M., 2014): 

One process during execution can create another process that is not planned 
previously; 

Processes may be interconnected in an unforeseen manner. These processes can 
be any of the ones that were initially defined and created later; 

Processes may interact with the system environment in an unforeseen manner. 
Thus, the resource requirements of the process may be changed. 

In all three cases, there can be resource requirements that are not considered at 
the start of the system, which brings the load balancer to the unknown state. To avoid 
this problem, dynamic and interactive events should be considered in the equation (1). 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) ∶

.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠!"#$%&"'"()|𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦-/(0%)%/(2 → .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒*+,-"2  (3) 
So, the load distribution process depends on dynamic and interactive events, and 

it should create a mapping between global activities and resource attributes as well as 
mapping between process requirements and resource attributes. Here, the global 
activities are process requirements that locally cannot be fulfilled (Khaneghah, E. M., 
2017). 

For handling the global activity conditions, it needed to restart the load balancer, 
considering previously unforeseen resource requirements. However, in this case, it 
should "try" to change the response structure for unknown resource requirements. 
Thus, the load balancer should either find a new resource to meet the demand for an 
unknown resource with activating resource discovery module (Rezaei, S., Khaneghah, 
E. M., & Aliev, A. R., 2020; Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E., 
2018; Adibi, E., & Khaneghah, E. M., 2018) and migrate the process to relevant 
resource (Sohrabi, Z., & Khaneghah, E. M., 2020), or replace the unknown resource 
requirement with known resource requirements (Khaneghah, E. M., Mollasalehi, F., 
Aliev, A. R., Ismayilova, N., & Bakhishoff, U., 2018; Khaneghah, E. M., & Sharifi, M., 
2014). 

 
2. Related works 
In (Khaneghah, E. M., & Sharifi, M., 2014), the model based on vector algebra 

suggested for implementing load distribution in dynamic and interactive environment. 
For that model, there is a general state vector. Over the time this vector changes. For 
each executed process, if this vector changes, the load balancer tries to solve two 
problems: value disorder and direction disorder. Value disorder means the direction of 
the vector that defines the difference between two states of the system is same as 
direction of the general state vector, but values are different. If directions are different, 
it means the direction disorder has occurred. Solving these two problems allows to 
reconfigure a distributed exascale computing system during dynamic and interactive 
events in runtime. However, it is difficult to determine the state vector of the system 
and the new state vector after dynamic and interactive events occur. 

In (Ismayilova, N., & Bakhishoff, U., 2018; Bakhishoff, U., Khaneghah, E. M., Aliev, 
A. R., & Showkatabadi, A. R., 2020) proposed a model based on discrete time Hidden 
Markov Model. For this model, the system should not consider a dynamic and 
interactive event itself, but consider system state instead, which the system reached 
after dynamic and interactive event has occurred. The load distribution function choses 
the best system state configuration for current state based on learned historical states 
of the system. This model does not suggest changing resource request, instead it 
suggests reconfiguring load distribution. Implementing this model, gives opportunity 
to learn possible states and find best configuration for new state after dynamic and 
interactive event has occurred. The main problem for implementing this model is that, 
the model needs to learn the system after each change of system state and need to 
store many historical data about each system state changes. 

In (Bakhishov, U., 2019), the oscillation concept of load distribution is defined. For 
this concept each global activity should move over the nodes of the system until 
reaching capable node for that process. But the parameters of oscillation are not 
defined based on process requirements and resource attributes. Also, the optimization 
is needed for movement of process over the nodes of the system. 

 
3. Proposed model 
As seen in equation (3), global activities should be considered while load 

distribution as well as local process requirements. Global activities are raised based 
on a sender-initiated load distribution strategy (Mirtaheri, S. L., & Grandinetti, L., 2017) 
by nodes that are in imbalanced (Bakhishov, U., 2019). The requirements of the global 
activities which are assigned to the node and local process requirements should be 
merged. If this set named as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9, then the requirements of the global 
activities raised form current node should be excluded from 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9. If this 
excluded set named as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9, it can be given the following definition: 

𝐻𝐻𝐻𝐻𝐶𝐶4&/-"22*-7"0$8%(9 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑙𝑙4&/-"22*-7"0$8%(9 ∪ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙4&/-"22*-7"0$8%(9  (4) 
In period the processes in global process scheduling should assign back to local 

machine. In traditional manner, the HPC system starts working with predefined load. 
Let’s assume that this system has single node which has no available resource. In 

this state all load in local process scheduling will move into global process scheduling. 
But, due to lack of another resource all processes in global process scheduling will 
move back to local process scheduling in a period (Fig. 1). 

Figure 1 defines load flow between local and global process scheduling. Because 
of there is no change in amount of load in period, the process will continue periodically. 
If the state with an empty local and global process scheduling assumed as initial state, 
replacement of the workload to opposite sides – local process scheduling and global 
process scheduling – around initial state, is the oscillation process. And if the amount 
of the workload does not change over the periods, this is harmonic oscillation process. 
The harmonic oscillation processes are defined with following formula: 

!!"($)
!$!

+ 𝜔𝜔&𝑤𝑤(𝑡𝑡) = 0     (5) 
For the proposed model 𝑤𝑤(𝑡𝑡) is a function of workload of the node which does 

replacements around the initial state, and 𝜔𝜔& is an angular frequency of oscillation and 
𝑡𝑡 is the time. The workload of the node is the function of the requirements of the 
processes, and it does not depend on the resource attributes of the node. The angular 
frequency of the oscillation depends on deadline of the global process scheduling for 
containing task in it.  

!!"'()*+,--"#$%&'#(#)*+,$/

!$!
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠0,123),4,5$-, 𝑡𝑡1 = 0   (6) 

The process with rule of equation (6) will continue infinitely.  
If the resources of the node are available then some piece of the workload of the 

node will reduced while period (Fig. 2), in other words, the oscillation is damped. 
The Figure 2. describes workload flow between local and global process 

scheduling, considering resources of the system. In that case, the resource reduces 
the workload of the machine. For that reason, it should be considered a damping factor 
in the equation (6).  

!!"'()*+,--'#$%&'#(#)*+,$/

!$!
+ 2𝛽𝛽𝜔𝜔&

!"'()*+,--'#$%&'#(#)*+,$/

!$
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠),123),4,5$-, 𝑡𝑡1 =

0     (7) 
Here 𝛽𝛽 is a damping factor. The damping factor depends on both resource 

attributes that causes damping. The process with rule in equation (7) will stop over the 
time. 

If the node has connection with another node, then another piece of load will be 
reduced by connected node over the time. But it should be considered that, it also can 
be accepted extra load from connected nodes. In this case the process should turn 
into a driven oscillation equation that contains another damping factor for reduction of 
load by the connected node and forcing factor for accepting extra load from the 
connected node. 

In Distributed Exascale HPC systems the Dynamic and Interactive Events (D&I) may 
occur during runtime. These events create new load internally. But the specifications 
of these types of loads are their requirements which are completely or partial unknown 
to the node or not matching to the resource attributes of the node. In this case the node 
should try to approximate the requirements of the D&I to the resource attributes of the 
node. If it is possible with acceptable error, it should be accepted approximated loads, 
original requirements should be kept. These types of loads also should be considered 
in the forcing factor.  

 
Discussion 

The process of load distribution between the resources is a complex oscillation 
process. But the factors of this process and the dependence of these parameters on 
the characteristics of the system has not been defined. If these parameters and their 
dependencies are defined, it would be able to estimate that how long the oscillation 
process will continue with current load, and it would be possible to optimize oscillation 
process to finish it as soon as possible. So, if the periodic process will be able to 
change into an aperiodic process, the system would get into stable state in the 
minimum time. Because in that case the best resource for handling current global 
activity may be found with single migration. 

 

of the workload does not change over the periods, this is harmonic oscillation process. 
The harmonic oscillation processes are defined with following formula: 

!!"($)
!$!

+ 𝜔𝜔&𝑤𝑤(𝑡𝑡) = 0     (5) 
For the proposed model 𝑤𝑤(𝑡𝑡) is a function of workload of the node which does 

replacements around the initial state, and 𝜔𝜔& is an angular frequency of oscillation and 
𝑡𝑡 is the time. The workload of the node is the function of the requirements of the 
processes, and it does not depend on the resource attributes of the node. The angular 
frequency of the oscillation depends on deadline of the global process scheduling for 
containing task in it.  

!!"'()*+,--"#$%&'#(#)*+,$/

!$!
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠0,123),4,5$-, 𝑡𝑡1 = 0   (6) 

The process with rule of equation (6) will continue infinitely.  
If the resources of the node are available then some piece of the workload of the 

node will reduced while period (Fig. 2), in other words, the oscillation is damped. 
The Figure 2. describes workload flow between local and global process 

scheduling, considering resources of the system. In that case, the resource reduces 
the workload of the machine. For that reason, it should be considered a damping factor 
in the equation (6).  

!!"'()*+,--'#$%&'#(#)*+,$/

!$!
+ 2𝛽𝛽𝜔𝜔&

!"'()*+,--'#$%&'#(#)*+,$/

!$
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠),123),4,5$-, 𝑡𝑡1 =

0     (7) 
Here 𝛽𝛽 is a damping factor. The damping factor depends on both resource 

attributes that causes damping. The process with rule in equation (7) will stop over the 
time. 

If the node has connection with another node, then another piece of load will be 
reduced by connected node over the time. But it should be considered that, it also can 
be accepted extra load from connected nodes. In this case the process should turn 
into a driven oscillation equation that contains another damping factor for reduction of 
load by the connected node and forcing factor for accepting extra load from the 
connected node. 

In Distributed Exascale HPC systems the Dynamic and Interactive Events (D&I) may 
occur during runtime. These events create new load internally. But the specifications 
of these types of loads are their requirements which are completely or partial unknown 
to the node or not matching to the resource attributes of the node. In this case the node 
should try to approximate the requirements of the D&I to the resource attributes of the 
node. If it is possible with acceptable error, it should be accepted approximated loads, 
original requirements should be kept. These types of loads also should be considered 
in the forcing factor.  

 
Discussion 

The process of load distribution between the resources is a complex oscillation 
process. But the factors of this process and the dependence of these parameters on 
the characteristics of the system has not been defined. If these parameters and their 
dependencies are defined, it would be able to estimate that how long the oscillation 
process will continue with current load, and it would be possible to optimize oscillation 
process to finish it as soon as possible. So, if the periodic process will be able to 
change into an aperiodic process, the system would get into stable state in the 
minimum time. Because in that case the best resource for handling current global 
activity may be found with single migration. 

 

Fig. 2. Process of reducing the workload

Azerbaijan Journal of High Performance Computing, 4 (1), 2021



130

References
Adibi, E., & Khaneghah, E. M. (2018). Challenges of resource discovery to support 

distributed exascale computing environment. Azerbaijan Journal of High Performance 
Computing, 1(2), 168-178.

Bakhishoff, U., Khaneghah, E. M., Aliev, A. R., & Showkatabadi, A. R. (2020). DTHMM 
ExaLB: discrete-time hidden Markov model for load balancing in distributed exascale 
computing environment. Cogent Engineering, 7(1), 1743404.

Bakhishov, U. (2019) The Oscillation Model of Load Flow of Global Activities in a Fully 
Distributed Exascale System. Azerbaijan Journal of High Performance Computing, 2(2), 
178-182.

Ismayilova, N. T. (2020) Challenges of Using Different Mathematical Models for Load 
Balancing Optimization in Multi-Core Computing Systems. Azerbaijan Journal of High 
Performance Computing, 3(2), 190-195.

Khaneghah, E. M. (2017). U.S. Patent No. 9,613,312. Washington, DC: U.S. Patent 
and Trademark Office.

Khaneghah, E. M., & Sharifi, M. (2014). AMRC: an algebraic model for reconfiguration 
of high performance cluster computing systems at runtime. The Journal of Supercom-
puting, 67(1), 1-30.

Khaneghah, E. M., Aliev, A. R., Bakhishoff, U., & Adibi, E. (2018). The influence of 
exascale on resource discovery and defining an indicator. Azerbaijan Journal of High 
Performance Computing, 1(1), 3-19.

Khaneghah, E. M., Mollasalehi, F., Aliev, A. R., Ismayilova, N., & Bakhishoff, U. (2018). 
Challenges of load balancing to support distributed exascale computing environment. 
In Proceedings of the International Conference on Parallel and Distributed Processing 
Techniques and Applications (PDPTA)  (pp. 100-106). The Steering Committee of The 
World Congress in Computer Science, Computer Engineering and Applied Computing 
(WorldComp).

Mirtaheri, S. L., & Grandinetti, L. (2017). Dynamic load balancing in distributed exas-
cale computing systems. Cluster Computing, 20(4), 3677-3689.

Pereira, E. P., Padoin, E. L., Medina, R. D., & Méhaut, J. F. (2020, July). Increasing the 

of the workload does not change over the periods, this is harmonic oscillation process. 
The harmonic oscillation processes are defined with following formula: 

!!"($)
!$!

+ 𝜔𝜔&𝑤𝑤(𝑡𝑡) = 0     (5) 
For the proposed model 𝑤𝑤(𝑡𝑡) is a function of workload of the node which does 

replacements around the initial state, and 𝜔𝜔& is an angular frequency of oscillation and 
𝑡𝑡 is the time. The workload of the node is the function of the requirements of the 
processes, and it does not depend on the resource attributes of the node. The angular 
frequency of the oscillation depends on deadline of the global process scheduling for 
containing task in it.  

!!"'()*+,--"#$%&'#(#)*+,$/

!$!
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠0,123),4,5$-, 𝑡𝑡1 = 0   (6) 

The process with rule of equation (6) will continue infinitely.  
If the resources of the node are available then some piece of the workload of the 

node will reduced while period (Fig. 2), in other words, the oscillation is damped. 
The Figure 2. describes workload flow between local and global process 

scheduling, considering resources of the system. In that case, the resource reduces 
the workload of the machine. For that reason, it should be considered a damping factor 
in the equation (6).  

!!"'()*+,--'#$%&'#(#)*+,$/

!$!
+ 2𝛽𝛽𝜔𝜔&

!"'()*+,--'#$%&'#(#)*+,$/

!$
+ 𝜔𝜔&𝑤𝑤)𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠),123),4,5$-, 𝑡𝑡1 =

0     (7) 
Here 𝛽𝛽 is a damping factor. The damping factor depends on both resource 

attributes that causes damping. The process with rule in equation (7) will stop over the 
time. 

If the node has connection with another node, then another piece of load will be 
reduced by connected node over the time. But it should be considered that, it also can 
be accepted extra load from connected nodes. In this case the process should turn 
into a driven oscillation equation that contains another damping factor for reduction of 
load by the connected node and forcing factor for accepting extra load from the 
connected node. 

In Distributed Exascale HPC systems the Dynamic and Interactive Events (D&I) may 
occur during runtime. These events create new load internally. But the specifications 
of these types of loads are their requirements which are completely or partial unknown 
to the node or not matching to the resource attributes of the node. In this case the node 
should try to approximate the requirements of the D&I to the resource attributes of the 
node. If it is possible with acceptable error, it should be accepted approximated loads, 
original requirements should be kept. These types of loads also should be considered 
in the forcing factor.  

 
Discussion 

The process of load distribution between the resources is a complex oscillation 
process. But the factors of this process and the dependence of these parameters on 
the characteristics of the system has not been defined. If these parameters and their 
dependencies are defined, it would be able to estimate that how long the oscillation 
process will continue with current load, and it would be possible to optimize oscillation 
process to finish it as soon as possible. So, if the periodic process will be able to 
change into an aperiodic process, the system would get into stable state in the 
minimum time. Because in that case the best resource for handling current global 
activity may be found with single migration. 

 

Ulphat Bakhishov



131

efficiency of Fog Nodes through of Priority-based Load Balancing. In 2020 IEEE Sympo-
sium on Computers and Communications (ISCC) (pp. 1-6). IEEE. 

Rezaei, S., Khaneghah, E. M., & Aliev, A. R. (2020) Challenges of Influence Dynamic 
and Interactive Events on Resource Discovery Functionality outside of Distributed Exas-
cale Systems. Azerbaijan Journal of High Performance Computing, 3(2), 164-180.

Shahrabi, S., Mollasalehi, F., Aliev, A. R., & Mousavi, E. (2018) Load Balancing in 
Distributed Exascale Computing Based on Process Requirements. Azerbaijan Journal of 
High Performance Computing, 1(2), 158-167.

Sohrabi, Z., & Khaneghah, E. M. (2020) Challenges of Using Live Process Migration 
in Distributed Exascale Systems. Azerbaijan Journal of High Performance Computing, 
3(2), 151-163.

Submitted: 10.10.2020
Accepted: 31.05.2021

Azerbaijan Journal of High Performance Computing, 4 (1), 2021


