
15

Object Recognition for Augmented
Reality Applications
Vladislav Li1, Georgios Amponis2, Jean-Christophe Nebel1, Vasileios Argyriou1,
Thomas Lagkas2  and Panagiotis Sarigiannidis3

1 Department of Networks and Digital Media, Kingston University, London, UK
2 Department of Computer Science, International Hellenic University, Greece
3 Department of Electrical and Computer Engineering, University of Western Macedonia, 
Kozani, Greece, psarigiannidis@uowm.gr

*Correspondence: 
Panagiotis Sarigiannidis, 
Department of Electrical 

and Computer 
Engineering, University 
of Western Macedonia, 
Kozani 50131, Greece, 

psarigiannidis@uowm.gr

Abstract 
Developments in the field of neural networks, deep learning, 
and increases in computing systems’ capacity have allowed 
for a significant performance boost in scene semantic infor-
mation extraction algorithms and their respective mechanisms. 
The work presented in this paper investigates the performance 
of various object classification- recognition frameworks and 
proposes a novel framework, which incorporates Super-Res-
olution as a preprocessing method, along with YOLO/Retina 
as the deep neural network component. The resulting scene 
analysis framework was fine-tuned and benchmarked using 
the COCO dataset, with the results being encouraging. The 
presented framework can potentially be utilized, not only in still 
image recognition scenarios but also in video processing.
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1. Introduction
Modern improvements and advances in the fields of computer vision, and deep 

learning, along with the introduction of smart devices and powerful computing equip-
ment, have stimulated research interest in real-time scene analysis. Scene analysis 
describes the contents of an environment given as an input by using information com-
putationally extracted from that environment. The field of surveillance, security, and the 
increasingly popular autonomous vehicles all use scene analysis as a key component 
for providing their respective services. Thus, all those disciplines can benefit from a 
performance increase to allow their more extensive deployment and adoption as the 
industry standard. This study aims to research scene analysis methods that could be 
widely adopted in the modern high-performance computing landscape for the modem 
industry and propose a novel preprocessing mechanism for scene analysis using su-
per-resolution.

High performance computing strongly relates to image processing and object 
recognition mechanisms due to said method’s architectures and training procedures 
significantly benefiting from low processing times. More specifically, GPU-based 
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high-performance computing allows for deep learning networks to be trained, tested, 
and evolved en masse. High-performance computing allows for the most prominent 
challenges and issues with deep learning to be effectively tackled. The impact and 
applications of GPU-enabled high-performance computing in deep learning are nu-
merous, with the most prominent ones being the potential to solve the issues of (a) 
training models with complex topologies, (b) configuring a network to an optimal to-
pology, (c) implementing deep learning models by utilizing simulated hardware-layer 
synapse architectures, and (d) constructing an efficient network from non-examined 
data examined.

Apart from proposing a novel preprocessing mechanism, the presented work con-
stitutes a review of the currently utilized scene recognition methodologies. More spe-
cifically, this paper engages in a comparative study of object classification and rec-
ognition solutions and models for high-performance computing systems and a review 
of the current state-of-the-art approaches for scene analysis in terms of computational 
requirements, speed, and accuracy. 

The rest of this paper is structured in four main sections. The following section, 
“Related work” analyzes the previously researched domain of image recognition using 
various models. Accordingly, the following section, “Proposed Framework for Scene 
Analysis,” is dedicated to explaining this paper’s proposal of a novel scene analysis 
framework and is composed of two subsections: one concerning preprocessing with 
super-resolution and one respectively concerning scene analysis using deep models. 
Next, the section titled “Performance evaluation” constitutes an assessment of various 
image recognition models, for which the COCO dataset was utilized. Lastly, the final 
section concludes the paper while assessing its contribution to the domain of high-per-
formance computing enabled image processing.

2. Related work
This section analyzes existing related work and research conducted by other ex-

perts in the field. In short, this section analyzes the R-CNN model, the Mask R-CNN 
model (which is based on R-CNN), the Cascade R-CNN model, and the Optimized 
SSD, CenterNet, ONCE, MAL, D2Det, and Faster R-CNN models alike. Background 
information for each model is provided, along with a short description of their basic 
functionality and improvements compared to their predecessors.

Girshick et al. (2014) introduced the R-CNN model, which constitutes a region pro-
posal-based framework, relying on a two-step process. In said region proposal-based 
frameworks, the input image’s region, which may contain recognizable objects, is pro-
posed. Continuing, the discernable features of said objects are extracted from the 
proposed regions. To extract the class of proposed objects, the model resorts to the 
usage of classifiers.

He et al. (2017) proposed the Mask R-CNN method, which relies on the R-CNN prin-
ciple. The introduced method is capable of discerning bounding boxes and parallel 
segmentation masks. The process of generation of the candidate regions is followed 
by an attempt to discern the object’s class while refining the bounding box containing 
the possibly discerned object and calculating the object’s mask.

Cai and Vasconcelos (2019) attempt to address the issue of performance degrada-
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tion upon the increase of the intersection-over-union threshold observed in the previ-
ously mentioned Mask R-CNN by resorting to the new object recognition architecture 

Cascade R-CNN. Cascade R-CNN’s central idea is to use different detection 
head networks at each stage, where each one of them is designed for one intersec-
tion-over-union threshold. All detectors comprising the architecture are trained suc-
cessively, and each one’s output is handed over to the next one. Figure 1 visualizes 
Cascade R-CNN’s architecture, with the input being denoted as “I”, the backbone net-
work as “conv”, the region extraction layer as “pool”, the detection area of interest as, 
and lastly, the bounding boxes and classification scores as “B” and “C” respectively.

Fig.1. The architecture of Cascade R-CNN.

One-step object detectors directly predict objects' bounding boxes and class la-
bels alike by feeding a full image to a convolutional network that does not require any 
region proposals. Because those frameworks' pipeline is a single network, we can ob-
serve a faster solution than the one provided by two-stage detectors, where their first 
step is instead time-consuming. We can thus conclude that those one-step frameworks 
are particularly suitable for real-time applications.

In the context of increasing detectors’ efficiency, Kong et al. (2019) proposed the 
Optimized SSD, which has the potential of significantly increasing performance. The 
main idea of Optimized SSD is the utilization of the refined anchors during training for 
both classification and regression. This is implemented by extending the single-stage 
detector's optimization method. Figure 2 illustrates the network architecture used in 
single-shot detectors and the one proposed in (Kong et al., 2019), with the input image 
being denoted as "I", the backbone network as conv, the convolutional network head 

as “H”, the classification score as "C" and the original and refined anchor boxes as 
AO and A1, respectively.

Azerbaijan Journal of High Performance Computing, 4 (1), 2021
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Fig. 2. (a) Network architecture of single-shot object detectors, 
(b) Network architecture of Optimized SSD (Kong et 2019)

Anchor-free techniques are the current trend in object detection methods. The main 
idea behind anchor-free object detectors is to compute the bounding box corners around 
an object instead of predicting fixed bounding boxes.

Researchers in (Duan et al., 2019) proposed CenterNet, which essentially is a state-of-
the-art Lidar-based 3D detection and tracking framework. It combines the usage of center 
and corner points alike. The backbone network receives an image as an input. By applying 
cascade, comer, and center pooling, CenterNet extracts the corner and the center heat-
maps. This framework also supports the extraction of embedding vectors and offsets for 
the corner points by utilizing the architectural elements of CornerNet (Duan et al., 2019). 
Furthermore, CenterNet predicts the offsets of the center keypoints; detected corners and 
embeddings are used to compute and spatially define the bounding boxes of the recog-
nized objects. The detected center points are used to increase the accuracy of the final 
bounding boxes’ coordinates, effectively refining the framework’s output.

Researchers in (Perez-Rua et al., 2020) proposed OpeN-ended Centre nEt (ONCE), 
which is based on CenterNet (Duan et al., 2019), with the added functionality that 

can detect objects from classes with a small number of examples inside its training 
dataset. The ONCE network is based on Incremental Few-Shot Detection learning, where a 
predictive model can be trained on large datasets and be deployed afterward in real-world 
scenarios with only a small number of samples inside its dataset. At the same time, the 
training procedure, which comprises two stages, receives a test image from the training 
dataset as an input and extracts the 3D feature maps.

In addition to the above, Ke et al. (2020) introduced Multiple Anchor Learning (MAL). 
The researchers based their work on RetinaNet (Lin et al., 2017). MAL was created to 
address the inherent limitations of CNN-based detectors regarding the jointly optimized 
classification and localization of a detected object. This limitation stems from the classifi-
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cation and localization modules in detectors being optimized under a static set of possible 
bounding boxes. The researchers propose a module that selects anchors and jointly opti-
mizes both the classification and localization modules of a CNN-based detector by finding 
an optimal anchor selection. The main idea of MAL is that an “anchor bag” is created 
for each existing object detected on an input image. Said anchor bags include the top k 
anchors (depending on the intersection over union threshold between the anchors which 
MAL predicted and the bounding box). At the next stage, MAL evaluates said anchors; this 
evaluation is implemented using the confidence of their joint classification and localization. 
Lastly, MAL selects the most representative anchor from each respective bag.

Finally, Cao et al. (2020) proposed a two-step object detection method called D2Det 
based on the Faster R-CNN framework (Ren et al., 2015). The Region of Interest (Rol) 
features which the Region Proposal network (RPN) network generates for each possible 
object proposal are passed and processed through two different modules: a) high-density 
local regression and b) discriminant Rol pooling. In particular, a dense local regression 
block replaces the FasterR-CNN offset regression.

Faster R-CNN extracts Rol features which are traversed through numerous fully con-
nected layers to predict a single global offset. In turn, dense local regression predicts mul-
tiple position-sensitive local offsets by utilizing a convolutional network. Faster R- CNN’s 
strategy introduces a measurable increase in accuracy in terms of box localization. Fur-
thermore, when it comes to the classification task, the discriminative Rol pooling block 
first uses a lightweight offset prediction for each Rol and then performs adaptive weight 
pooling. This process is followed to assign higher weights to Rol’s discriminative sampling 
points.

3. Proposed Framework for Scene Analysis
In this work, we propose a framework for scene analysis combining super-resolution 

with object detection architectures. An overview of the proposed framework is shown in 
Figure 3, and it contains two major components: (a) the super-resolution module as part 
of the preprocessing component and (b) the object detection and classification models.

This section constitutes the presented work’s main contribution to the field; with the 
proposed framework being composed of a Pre-processing and a Deep Neural Network 
module, a respective subsection analyzes both components and explains their relevance 
to the extraction of semantic information from a given input. A comparative study and 
thorough investigation of different deep neural network models for high-performance com-
puters were conducted, with the results being presented in the respective section. The sig-
nificance of this paper’s outputs stems from the results indicating which model (and thus 
overall framework architecture) offers lower processing times and higher overall efficiency.

Fig. 3. The architecture of proposed scene analysis framework 

Azerbaijan Journal of High Performance Computing, 4 (1), 2021



20

3.1. Preprocessing with super-resolution
Super-resolution can be defined as creating high-resolution (HR) images by using cor-

responding low resolution (LR) images. High-resolution images provide high-quality scene 
reconstruction that can be useful for many real-world high-performance computing applica-
tions. Such applications include but are not limited to satellite and medical imaging (Huang et 
al., 2017), multimedia content, face recognition (Mudunuri and Biswas, 2015), and security.

A substantial amount of research is centered around obtaining Convolutional Neural 
Networks (CNNs) architectures and different loss functions (which are used to boost said 
networks' performance). Researchers have introduced Generative Adversarial Networks 
(GANs) to tackle the super-resolution (SR) problem. In most strategies, the loss function 
utilized to train deep neural networks is the Mean Square Error (MSE) between the recon-
structed and the actual image. Nevertheless, usage of this metric usually makes the gen-
erated high-resolution pictures seem oversmoothed and somewhat blurred. Although 
those methods have superb results using the peak signal-to-noise ratio (PSNR), they are 
unable to create "good" (i.e., realistic, not over-smoothed) looking images. An answer to 
this issue is using perceptual loss as a loss function (Johnson et al., 2016). Specifically, 
this loss function is computed on high-level options extracted from pre-trained convolu-
tional neural networks, like VGG (Simonyan and Zisserman, 2014).

Goodfellow et al. (2014) introduced Generative Adversarial Networks (GANs) to tack-
le the image quality issue mentioned above. As a general rule, such adversarial networks 
are heavily influenced by game theory. Two distinct networks (generator and discrimina-
tor) are conjointly trained, with each one's purpose is to manage to trick the other party. 
What happens in more detail regarding SR is that the generator receives the LR image 
as an input and then tries to generate a super-resolution (SR) image (as seen in Figure 
4 The discriminator module (D) receives the real and the generated HR images as in-
put, alike. The discriminator then tries to distinguish between them and deduct which is 
which. The discriminator’s output is fed to the generator as an input to enable the future 
generation of high-fidelity and realistic high-resolution images; conjointly training those 
two networks (the generator and the discriminator) lets the generator produce an output 
high quality and indistinguishable from the real HR images.

Fig. 4. Function of GANs

Vladislav Li, et al. 
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Ledig et al. (2017) proposed a GAN-based SR framework named “SRGAN”. How 
SRGAN functions on a high level are: the generator receives the LR image as input and 
outputs an SR image. The generator also contains residual blocks with skip connec-
tions instead of convolutional layers. Such connections have proven to be more suit-
able in training deep networks. In turn, the discriminator receives both the ground truth 
and the generated HR images as input and then tries to distinguish between them. Us-
age of the discriminator network and the adversarial nature of the “fight” between gen-
erator and discriminator encourages the latter to produce high fidelity results, which 
translates to images that are more likely to trick the discriminator.

3.2.	 Scene analysis using deep models
This section is dedicated to analyzing the YOLOv3 and the RetinaNet machine 

learning (ML) methods; more specifically, this section aims to provide sufficient back-
ground information and details regarding said methods’ operation. Those two ML 
methods were selected because they have displayed excellent performance on differ-
ent datasets in the existing literature. Additionally, YOLOv3 and RetinaNet fit represen-
tatives for different object detectors, e.g., two-step detectors or pyramid architectures. 
Regression/Classification-Based Frameworks are composed of several integrated 
stages. Those stages may be:

a) region proposal generation
b) CNN-based feature extraction
c) classification 
d) bounding box regression
The stages mentioned above are generally trained separately, and as a conse-

quence, they are inherently computationally demanding, which renders them non-suit-
able for real-time applications. Nevertheless, some strategies (such as mapping pixels 
to bounding box coordinates and object class probabilities) manage to reduce time 
complexity. Amidst the various one-step detection architectures, there exist two which 
distinguish themselves; namely, only look once (YOLO) (Redmon et al., 2016) (with the 
name indicating that this is a single-step method), and Single Shot MultiBox Detector 
(SSD), (Liu et al., 2016).

Fig. 5. The YOLO concept

The YOLO framework utilizes the whole feature map to predict both confidences for 
multiple categories and bounding boxes. YOLO’s basic function is illustrated in Figure 

Azerbaijan Journal of High Performance Computing, 4 (1), 2021
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5. The YOLO concept. The input image is initially divided into an S x S grid. Each grid 
cell is tasked with predicting the object-centered inside of it. Continuing, each cell pre-
dicts B bounding boxes, along with their corresponding confidence scores.

3.2.1. YOLOv3
In contrast to its predecessors (YOLO9000 and YOLO), YOLOv3 is more complex 

due to skip-connections, residual blocks, and upsampling alike being integrated. Error! 
Reference source not found illustrates YOLOv3’s architecture on a high level. After being 
processed by the first set of approximately 80 convolutional layers (which is represented 
by the first “Convolutional layers” block), the input image is downsampled by a factor of 
32. For example, an input image of 1216x1216 after the mentioned downsampling stage 
would be represented by a 38x38 feature map. This downsampled 38x38 feature map is 
at that stage converted into a prediction map 

through a lxl convolutional layer. Inside the prediction map obtained at this stage, 
each cell is responsible for detecting a fixed number of bounding boxes. Since three 
anchors per prediction map are used, the number of predicted bounding boxes at this 
stage will be equal to 38x38x3=4332. Each bounding box can be represented by 4+1+C 
(where C is the number of classes), which stands for the 4 box’s angular coordinates, 1 
objectness score, and C class scores. Regarding the objectness and the class scores, 

Fig. 6. Abstract representation of the fulYOLOv3 architecture. Predictions are
made at three different scales.

Vladislav Li, et al. 
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their values were extracted using softmax functions in the previous versions (YOLO9000 
and YOLO), while their values are obtained via a sigmoid function in the current version 
(YOLOv3). Additional convolutional layers are included, at which stages the input is also 
upsampled by a factor of two. As a result, at the second stage, the prediction map’s size 
will grow into 76x76, thus resulting in additional 76x76x3 = 17328 bounding box predic-
tions. The upsampling process is again repeated - now having a map size of 152x152, 
for the third round of predictions, the resulting number of bounding boxes now being 
152x152x3 = 69312. Given the size of this number and the difficulty of working with it, 
the predictions undergo filtering; said filtering is done using the objectness score as a 
metric; additionally, non-max-suppression is applied to discard duplicate predictions.

3.2.2. RetinaNet
RetinaNet is comprised of three main elements that work together to make bounding 

box and class predictions. Figure 7 shows the architecture as it is presented by Lin et al. 
(2018). At the left of the figure shown below, one can see the mechanism’s backbone: a 
feed-forward convolutional network.

Note that even though only three distinct stages are shown, the network consists of 
a significantly greater number of layers (ResNet 50 has 50 convolutional layers). As the 
“Stage 1”, “Stage 2”, and “Stage 3” modules indicate, the input’s features are extracted 
thrice (one for every key point) and are used to build up the “feature pyramid” net, as 
seen in the second module of the figure below, resembling a pyramid comprised of five 
levels. The first three levels in the feature pyramid are directly obtained from the back-
bone features through a lxl convolutional layer and a combination with an upsampled 

Fig. 7. Abstract representation of the RetinaNet architecture. Note that through the 
feature pyramid network, features from all scales are shared.

Azerbaijan Journal of High Performance Computing, 4 (1), 2021
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version of the directly above layer. The last two pyramid levels are obtained from the 
last backbone features through 3x3 convolutions with stride 2. At each feature pyramid’s 
level, a subnet that classes and bounding boxes (as illustrated in the figure). Each class 
and box subset is comprised of two respective subnets. Lastly, a 9-anchor set is defined 
for every pyramid network level, covering a range between 16 and 406 pixels concerning 
the input image.

4. Performance evaluation
This section is dedicated to evaluating various methods that the proposed framework 

can potentially embed either RetinaNet or YOLOv3 to facilitate object recognition and 
scene analysis. The evaluation considers the mean average precision and processing 
time required for each method. As mentioned below, the COCO dataset was used to 
evaluate the performance of the models.

The COCO (Common Objects in Context) dataset is the most commonly utilized 
benchmarking tool for evaluating the performance of computer vision models. COCO 
is designed to represent a sizeable array of common objects with which we commonly 

Azerbaijan Journal of High-Performance Computing
interact. The dataset is labelled, providing data to train supervised computer vision 

models. The model’s goal is to identify the common objects in the given dataset. Based 
on the model’s outputs, COCO evaluates the possible improvement of these models. The 
COCO dataset contains 121408 images, 80 classes, and 883331 object annotations.

Table 1 constitutes a presentation and examination between advanced calculations. 
The most well-known assessment measurements are the Average Precision (AP) and 
Mean Average Precision (mAP) to assess object identification techniques. MAL and 
D2Det (Cao et al., 2020) both achieve significant performance improvements compared 
to the other methods. They demonstrably outperform previous state-of-the-art detection 
algorithms.
TABLE 1 Performance comparison (AP %) with the state-of-the-art methods on the MS-COCO 

test-dev dataset (Lin et al., 2014).

Method Backbone AP (%)

Mask R-CNN (He et al., 
2017) ResNetXt-101 39.8

Cascade R-CNN (Cai and 
Yasconcelos, 2019) ResNet-101 42.8

D2Det (Cao et al., 2020) ResNetl 01 -deform v2 47.4
CornerNet (Law and Deng, 
2018) Hourglass-104 40.5

ExtremeNet (Zhou et al., 
2019) Hourglass-104 40.2

CenterNet (Duan et al., 2019) Hourglass-104 44.9
MAL (Ke et al., 2020) ResNeXt-101 47.0

Vladislav Li, et al. 
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4.1. The Mean Average Precision
Mean average precision was first introduced by Lin et al. (2014) to represent object 

detection performance according to a user-defined set of criteria. This metric is now 
widely applied, e.g. (Zhou et al., 2019). The metric mAP can be defined as the mean 
value of the average precision of the individual classes: 

where APk is the AP of class k and n is the number of classes
A key element to understanding the average precision is the precision-recall graph. 

More specifically, for the average precision values to be computed, all the predictions 
for a specific class for all the input images are collected and sorted by considering their 
respective confidence levels. At that point, the average precision can be defined as an 
approximation of the area under the precision-recall curve, where first, the "envelope" 
of the precision-recall curve is computed. In addition to averaging over all the relevant 
classes for calculating the metric mAP, researchers in Lin et al. (2018) suggested that 
the metric mAP can be averaged over different IoU thresholds alike. Averaging over the 
different thresholds can offer information into how accurately the predicted boxes match 
the ground truth annotation; however, this depends on the quality of the ground truth 
annotation itself.

4.2.	 Processing Time
The average inference time per image is used to calculate processing time. As a re-

sult, it excludes the time spent loading the architecture and/or weights. To arrive at an ex-
pected value, the processing time is averaged through the entire batch of test data and 
then divided by the number of images evaluated. An averaging effect can be achieved 
with this method for different numbers of instances per image and different input sizes. 
Both the absolute processing time per frame (in milliseconds) and the average number 
of frames per second are commonly used units to express this KPI in the literature. The 
results of the experiments are displayed below in Figure 8. 

Fig. 8. Models’ performance evaluation and comparison

Azerbaijan Journal of High Performance Computing, 4 (1), 2021
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TABLE 2: Average Time required per image over the two models and the obtained AP% for 
each model.

Method Retina AP% (std) Yolo AP% (std) Average 
Time (sec per 

image)
Original Setup 33.0925 (1.7023) 34.6983 (0.2153) 1.591

Proposed SR without FT 33.9675 (2.2398) 34.6164 (0.2019) 2.1242
Proposed SR with FT 40.5125 (1.9109) 38.9844 (0.9117) 2.2102

The utilized processing time as seen in
Table 2 was computed based on the time required to process 128 images and 

then divided by the number of images to get an average time needed to process a 
single image since measuring the time required to process a single image by itself is 
non-realistic. The utilized hardware had the following specifications, a CPU: i7-11700F, 
a GPU: 2080ti lOgb, RAM: 32 GB, and Ubuntu 20.04.

 
5. Conclusions
This paper has presented a number of object recognition methods and algorithms. 

Furthermore, a novel image recognition framework aimed at scene analysis compris-
ing two submodules (super-resolution and deep neural network) was proposed. A re-
view and thorough analysis of the relevant existing work was conducted, along with the 
proposed framework's relation to it. The framework proposed in this paper may either 
use RetinaNet or YOLO to facilitate scene analysis at a neural network level; as such, 
both Retina and YOLO undergo review. The paper is concluded with a performance 
investigation of various state-of-the-art methods. The proposed analysis framework 
is benchmarked against standard scene recognition frameworks using COCO. The 
framework was benchmarked using both YOLO and Retina. As seen in the respective 
section, the proposed framework significantly outperforms the standard setups while 
using fine-tuning (FT), while performance shows no significant improvement otherwise. 
That being said, Retina shows a measurable higher deviation in all cases. High-perfor-
mance computing has the potential of enabling object and scene recognition models 
to be trained more efficiently. It is model training and highly demanding deployed 
model architectures that can significantly benefit from low processing times, especially 
when it comes to real-time video processing.
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