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Abstract
Emotional state recognition has become an essential topic for 
human–robot interaction researches that diverted and covers 
a wide range of topics. By specifying emotional expressions, 
robots can identify the significant variables of human behavior 
and apply them to communicate in a very human-like fashion 
and develop interaction possibilities. The multimodality and 
spontaneity nature of human emotions make them hard to 
be recognized by robots. Each modality has its advantages 
and limitations, which, along with the unstructured behavior of 
spontaneous facial expressions, make several challenges for 
the proposed approaches in the literature. The most important of 
these approaches is based on a combination of explicit feature 
extraction methods and manual modality. This paper proposes 
a modified fuzzy support vector machine (FSVM) classification-
based approach for emotional recognition using physiological 
signals. The main contribution of this study includes applying 
various data extraction indices and proper kernels for the FSVM 
classification method and evaluating the signal's richness in 
experimental tests. The developed emotional recognition method 
is also compared with conventional SVM and other existing state-
of-the-art emotional recognition algorithms. The comparison 
results show an improved accuracy of the developed method 
over other approaches.
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1. Introduction
Computers do not have emotional feelings, but if we would like to interact between 

computers and people with the possible naturality, the computer should consider hu-
man emotions. The affective computing field is a relatively young research base, where 
computer researchers have considered emotions for the past 20 years (Picard, R. W., 
2010). People show their emotions by expressing their faces, tones, sounds, modes, 
movements, and physiological signals. Emotion recognition using electrophysiological 
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signals is one of the branches of affective computing, and many researchers use bio 
signals to estimate people's affect. Physiological signals are helpful because, in the 
opposites to other signals, they are not controllable by humans, and they are strongly 
correlated to human emotions. People often express their emotions during interaction 
with computers, but computers do not recognize them. It's not necessary for the com-
puter to always pay attention to emotions, but it can be advantageous in many areas: 
health care, games, and e-learning. Applications that make people feel more comfort-
able with human feelings are beneficial for aged people's medical applications (Rat-
tanyu, K., Ohkura, M., & Mizukawa, M., 2010, October) and car drivers (Katsis, C. D., 
Katertsidis, N., Ganiatsas, G., & Fotiadis, D. I., 2008). Polyclinics also utilize emotional 
changes and are physiologically monitored, such as blood pressure, pressure, breath, 
and skin conduction (Liu, C., Conn, K., Sarkar, N., & Stone, W., 2008).

Recognizing human facial expressions and emotions has been applicable in dif-
ferent fields, from evolutionary Biology, biological psychology, and neuroscience to 
computer and cognitive science. This state is due to recognizing human facial expres-
sions and emotions in communications, social relationships, and Interactions (Barros, 
P., Jirak, D., Weber, C., & Wermter, S., 2015). Studying sensation through physiolog-
ical processing signals can provide clinical applications for the timely diagnosis and 
treatment of mental disorders. The primary purpose of this paper is to detect emotional 
states based on fuzzy classifications of physiological signals. Moreover, emotions in 
two dimensions of Arousal and Valence are examined using physiological signals. 

a. Motivation
In this paper, sensory sensitivity in an automated system is increased by examin-

ing the brain's electrical activity and the environment in emotional state changes. Re-
search sources have proven that the brain is the primary source of emotion (Hakamata, 
A., Ren, F., & Tsuchiya, S., 2008, October; Mi, L., Liu, X., Ren, F., & Araki, H., 2009). 
Electric brain activity can provide emotional information to the user without any inter-
mediary (Mi, L., Liu, X., Ren, F., & Araki, H., 2009; Khosrowabadi, R., & bin Abdul Rah-
man, A. W., 2010, December), as well as environmental signals, including emotional 
information. Therefore, it can be inferred that their anxiety states include high and low 
arousal, and valence's emotional state also includes positive and negative valence. 
The condition of anxiety, including high and low arousal, and valence's mood, also 
includes positive and negative valence. For recorded physiological signals, a label is 
considered. In this case, emotional states are divided into both sides, and each class 
of emotion must be individually trained to classify the test signals with a high percent-
age of accuracy.

On the other hand, these signals can be classified according to the two -Valence 
Arousal dimensions; in this case, the signals are classified into four classes. In this 
paper, with the help of the fuzzy vector machine, brain signals that contain emotional 
information are categorized. Also, the classification accuracy should be significantly 
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increased compared to conventional methods. The proposed method, fuzzing the data 
in the training phase and fuzzy the test data, reduces the effect of noise and data and 
increases the accuracy of classifying the physiological signals. As well as giving the 
value to each data to improve fuzzy classification, optimization methods can be used 
to select optimal parameters. 

b. Literature review
Two major approaches are presented for emotion modeling: the discrete model, 

whose main problem is the limited selection and cultural dependence, labels the emo-
tions, e.g., fear, sadness, and happiness. On the other hand, the continuous model 
employs continuous scales; for instance, the 2D model has valence and arousal axes, 
and the 3D model employs an additional dimension, usually called dominance.

In (Barros, P., Jirak, D., Weber, C., & Wermter, S., 2015), emotion recognition from 
physiological signals is performed; however, the employed dataset is straightforward, 
and only a limited number of recognition approaches are examined. 

It has been shown that physiological signals in different emotional situations, such 
as fear, sadness, and happiness, affect heart rate, respiration changes, skin conduc-
tivity, and body temperature affected by emotional states (Kim, J., & André, E., 2008). 
Many studies have been conducted on the sensory recognition of physiological sig-
nals. Using the EEG terminal, Choppin designed a system for people with ALS that 
automatically recognizes their emotions and allows them to communicate with the out-
side environment and express feelings. Acquiring neural networks in this category for 
classifying emotions led to a 64% classification for three emotional classes (Lahane, 
P., & Sangaiah, A. K., 2015). 

Some of the works of literature tried to extract only the intensity of the emotion from 
the EEG signal and the other physiologic signals. Different classifications have been 
used to classify EEG, environmental, and both signals, and the results have shown 
that the accuracy of the classification of emotions on EEG signals alone was approxi-
mately equal to the precision obtained from all physiological signals. Combining these 
signals' information increases the accuracy, using the audible stimulus to stimulate the 
emotions and the SVM for the EEG signal classification; the accuracy of 90% for the 
four senses of pleasure, anger, sadness, and joy has been achieved. However, using 
the IADS database for selecting the best drives and the linear binary method of Fisher 
Separator were used in classifying information, resulting in a gravity of 97.4% for the 
intensity of emotion and 94.9% for their nature (Chanel, G., Kronegg, J., Grandjean, 
D., & Pun, T., 2006, September). In the other studies, heart signals, skin temperature 
and direction, signals from the electrical activity of the muscles, blood volume pulses, 
and respiration rate have been considered. For example, In (Kim, K. H., Bang, S. W., & 
Kim, S. R., 2004) presents an independent user-friendly automated system by grading 
classifying three classes 78/8% by extracting and classifying heart rate and skin tem-
perature information using the Yashtian vector machine classifier. 
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In (Haag, A., Goronzy, S., Schaich, P., & Williams, J., 2004, June) reviewed all 
of the physiological signals and used two separate neural network algorithms to find 
out the quantity (intensity) and quality (nature) of emotions. This method classified 
emotions with an accuracy of 6.96% and 89/93% in intensity and nature, respectively. 
Moreover, in (Khalili, Z., & Moradi, M. H., 2008, December) by using the images in the 
LAPS database and classification with the genetic algorithm to select the appropriate 
features, we reached an accuracy of the extraction of EEG and environmental signals 
in the page-nature severity of 66.66%. In (Koelstra, S., Muhl, C., et al., 2011), (Christy, 
T., Kuncheva, L. I., & Williams, K. W., 2012) using compound combinations, the Naïve 
Bayes classifier reached the classification accuracy of 62%, 57/6%, and 62.49% for 
intensity, nature, and interest, respectively. Also, the use of the vector class of the 
supporting vector has increased these accuracies to 63.99% (intensity) and 49.62% 
(nature). Several studies have been done to diagnose feelings. However, in the past, 
the focus has been on face and speech modalities, and less attention has been paid to 
physiological parameters. In (Rigas, G., Katsis, C. D., Ganiatsas, G., & Fotiadis, D. I., 
2007, July), the features extracted from electrocardiogram and respiration signals for 
9 subjects. Mentioned subjects were stimulated by viewing the images selected from 
1APS, which were used by the K-NN and randomized strain for diagnosis of the feel-
ings of happiness, hatred, and fear were 48%, 68%, and 69%, respectively. In (Mi, L., 
Liu, X., Ren, F., & Araki, H., 2009), electrocardiogram signals, electromyograms, elec-
tric conduction of the skin, and the fear of three subjects triggered by musical stimula-
tion have been recorded. By extracting the attributes and applying the classifications 
for the four classes, the accuracy of 65% and the classification of the two classes of 
nature and excitement were 89% and 77%, respectively. In (Gouizi, K., Bereksi Re-
guig, F., & Maaoui, C., 2011), the features of the electromagnetic signals, respiration, 
electrical conductivity of the skin, skin temperature, pulsed blood volume, and heart 
rate were extracted to identify emotions. This research uses the supporting vector ma-
chine method for categorizing emotions into pleasure, sadness, fear, hatred, neutrality, 
and entertainment. In this study, the LAPS system was used to stimulate stimulation, 
and the accuracy of the diagnosis of various conditions in this experiment was 85%.

 (Yin, Z., Zhao, M., Wang, Y., Yang, J., & Zhang, J., 2017) proposed a novel en-
semble classifier with a multiple-fusion layer of stacked autoencoder for recognizing 
emotions, where the deep structure is identified using a physiological time series da-
ta-driven method. Each stacked autoencoder includes three hidden layers to filter the 
unwanted noisy data in the physiological features and leads to providing more stable 
feature representations. This approach uses an additional deep neural network model 
to reach the stacked autoencoder ensembles. The physiological features are clustered 
into subgroups based on different feature extraction methods, with each subset singly 
encoded by a stacked autoencoder. The reached stacked autoencoder initialization 
is merged based on the physiological modality to make six encodings, which are then 
fed to a three-layer, adjacent-graph-based network for feature combination.
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The combined features are used to recognize binary arousal. Based on the eval-
uation results, compared with the well-established emotion classifier, the proposed 
method's mean classification rate and F-score improved by 5.26%. In (Hong, K., Liu, 
G., Chen, W., & Hong, S., 2018), a novel classification algorithm based on signal am-
plification and correlation analysis called Eulerian magnification-canonical correlation 
analysis is proposed. This method extends emotional and physical stress signals in 
different frequency ranges as a signal amplification approach. Then, the Sparse cod-
ing and canonical correlation analysis combine the original signal and its amplified 
features. In this approach, the extracted entropy features train the correlation weight 
between emotional and physical stress, which adjusts stress classifications. Based on 
the evaluation results, the proposed classification method reaches an accuracy rate of 
90%. In (Zhang, B., Morère, Y., et al., 2017) proposed a novel method for the potential 
of stress recognition using data from heterogeneous sources. 

In this method, reaction time is used along with physiological signals to recognize 
different stress states. The experiments in this approach are designed with two dif-
ferent stressors: visual stressors and auditory stressors. During the experiments, the 
subjects perform reaction time tasks to achieve the data for an individual's stress. This 
approach records three physiological signals along with Electrodermal activity, Elec-
trocardiography, Electromyography, and reaction times. In this method, the classifier 
for stress recognition is based on the Support Vector Machines given the physiological 
signals and reaction time. The evaluation results show the overall good recognition 
performance of the SVM classifier. Moreover, this paper proposes a novel strategy of 
recognition using decision fusion. The recognition is obtained by combining the clas-
sification results of physiological signals and reaction time with the voting approach, 
which improves recognition accuracy. 

The recognition accuracy depends on the dataset utilized in the analyses. For ex-
ample, some main affecting factors are the emotional mood of the subject before the 
experiment, uncertainties like personal judgment, environmental issues, and condi-
tions in which the subjects have not participated in the experiments voluntarily. 

c. Contributions of manuscript
The main contribution of this paper is to propose an emotional state recognition. 

The employed dataset contains 32 individuals having 40 physiological signals for each 
of them, all of which passes through a preprocessing stage. Four emotional states in 
the 2D plane of valence and arousal are considered, i.e., HV, HA, LV, and LA. Features 
in both time and frequency domains and chaotic theory are utilized here, including 
mean, variance, bandpass, energy, entropy, and fractal. It is worth noting that the 
energy and entropy features are calculated through the wavelet transform; the band-
pass feature is also determined using the Fourier transform. Then, KPCA is used as a 
dimension reduction technique, whose outcome expedites the algorithm and improves 
the training performance and prediction accuracy. 
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Afterward, the classification is carried out by taking advantage of the FSVM method, 
i.e., having robustness against artifacts. Furthermore, several kernels of FSVM is ex-
plored to find the most suitable kernel, including linear, quadratic, polynomial, multilay-
er perceptron, and radial basis function. In addition, all parameters of KPCA and FSVM 
kernels are simultaneously optimized by genetic algorithm. Moreover, the correlation 
between all physiological signals and emotional dimensions (valence and arousal) is 
calculated to investigate whether appropriate electrodes are adopted for each feature.

d. Organization of manuscript
The rest of the paper is organized as follows. Section 2 describes the applied data 

in the analysis and the proposed clustering method. Section 3 is intended to introduce 
the proposed FSVM classification-based approach for emotional recognition using the 
physiological signals method. Accuracy results of the developed and state-of-the-art 
emotional recognition methods are provided in Section 4. and finally, in Section 5, con-
clusions and future work are provided.

2. The applied data in this research
The comprehensive database used in this paper is extracted from the provided 

datasets in (Mi, L., Liu, X., Ren, F., & Araki, H., 2009). This database contains EEG and 
peripheral signals collected from 32 participants between 19 and 37 with an average 
age of 26.9 through Audio-Visual Stimuli (lyric video). Half of the participants were 
women, and none had experienced nervous disorders or consumed alcohol drinking 
or drugs. They were not under any medication and had a normal or near-normal vision. 

Fig. 1: Applied data and features in the proposed method
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Fig. 2: Filled spots represent the selected music videos as stimuli (Katsis, C. D., 
Katertsidis, N., Ganiatsas, G., & Fotiadis, D. I., 2008)

Signal recording was performed in two laboratories with controlled light (The first 22 
people participated in a laboratory in Tonto city, and the rest participated in the labo-
ratory in Geneva).

The stimuli used in this experiment were selected in several steps. First, among 120 
initial stimuli, half were selected as semi-automatic, and the rest were selected as man-
ually. After that, a one-minute highlight part was determined for each stimulus. Finally, 
40 final stimuli were selected using a web-based cognitive testing experiment. Fig. 1 
presents the applied data and features in the proposed method.

In this poll, each participant assigns the Arousal scoring parameters from 1 to 9 to 
a discrete scale after watching each video. Eventually, after distributing the results in 
two-dimensional space, 40 final videos be selected for participating in the experiment. 
Video has selected the videos with the highest scores and the least standard deviation 
to increase the power of emotion. 10 videos are selected among videos that are locat-
ed in the corner of each quadrant because they are the most significant distance from 
the neutral state. Fig. 2 indicates the selected videos as stimuli.

The Valence-Arousal space can be divided into 4 quadrants: Low Arousal-Low Va-
lence (LALV), High Arousal-Low Valence (HALV), Low Arousal-High Valence (LAHV), 
and High Arousal-High Valence (HAHV).
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3. Proposed Method 
This section introduces the proposed FSVM classification-based approach for emo-

tional recognition using physiological signals. 

3.1. Pattern recognition
Pattern recognition involves various steps, including preprocessing, feature ex-

traction, selection, and classification (Hossain, M. S., & Muhammad, G., 2019). First of 
all, the collected information is recalled and then appropriately organized. In the next 
step, based on the EEG signals nature, the proper attributes are considered for the 
samples in which the system used in the classification is trained. Finally, the accuracy 
of the results and performance of the system is examined.

3.2. Data collecting and categorizing
In this section, raw data was collected from (Koelstra, S., Muhl, C., et al., 2011) 

(which includes receiving one hour of a physiological signal from the volunteer while 
watching the video).  63 seconds of compelling physiological EEG and peripheral 
signal data are processed and filtrated using the status signal. Finally, proper signals 
with their labels are extracted. Therefore, preprocessing is performed on the signals. 
In the end, organization data be usable. In other words, the outputs of 40 signals with 
a proper label for each participant. The block diagram in Fig. 3 shows the details of the 
different parts of this section.

Fig. 3: Block Diagram of Calling and Organizing Information Section

3.3. Extraction of proper features
Choosing the appropriate feature is the most critical challenge in classifying phys-

iological signals. Intuitively, the appropriate extracted features are those features that 
are as selective as possible to the signals. For this purpose, fractals, bandwidth, mean, 
variance, and violet are extracted properties where the block diagram is observable 
in Fig. 4.

3.4. Classification by FSVM
Since the EEG signal processing in this article has a long length, many channels are 

used to record it. The criterion of classification selection is the low volume of required 
computations. The speed of SVM training is higher than the other classifications, and 
with the best feature space size, it has the best performance compared to other clas-
sifications.
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Fig. 4: Feature extraction block diagram

First, consider the formulation of soft-margin vector machines as follows:
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  𝜉𝜉! ≥ 0															𝑖𝑖 = 1,… ,𝑁𝑁            (1) 
Where 𝑥𝑥!, 𝑦𝑦! and 𝜁𝜁!are input vector, labels, and slack variable, respectively. 

Moreover, the initial programming problem is converted as follows: 
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In eq. (2), C, is a free parameter (defined by the user) and specifies the 
effectiveness of slack variables in determining the margin. The geometric concept of 
a vector machine with a soft margin is shown in Fig. 5. 
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By using Lagrange multipliers and simplification, the following equation obtains: 
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Lagrange multipliers are replaced in the following equation to calculate W and b. 
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The final SVM hyperplane can be obtained by applying these parameters in the 

central equation of the separator hyperplane. 
If the problem data, in addition, are not linearly separatable, they also have a 

sophisticated distribution, and the SVM with a soft margin not be responsive. The 
mapping method can be used in a higher-dimensional space to solve this problem. 
For this purpose, the proper strategy is to use the kernel trick (Hakamata, A., Ren, F., 
& Tsuchiya, S., 2008, October). 

In this regard, consider the relation (0.3) in the feature space as follows. 
Therefore consider (3) in the following feature space: 
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In eq. (8), the function 𝐾𝐾(. ) is called the kernel function. Furthermore, if the internal 
multiplication of input data vectors can be modeled with a kernel function, it is no longer 
necessary to know or obtain the mapping function. This state the kernel trick. 

Some of the most usable standard kernel functions are: 
As stated in the previous section, fuzzy membership variables are also free 

parameters of FSVM, which should be considered appropriate values. For this 
purpose, a lower bound must be determined for membership values, indicating the 
sample's lowest value. After that, the main characteristic of the dataset is determined, 
which describes the importance of samples. In the end, the relationship between the 
primary dataset and fuzzy membership values should be well defined; this relationship 
can be described and applied as a mathematical equation. 

The proper choice of fuzzy membership functions in the given problem is significant 
in designing the FSVM classifier. The rule to assign appropriate membership values to 
each data depends on the importance of the data to their classes. In this work, to the 
training set efficiently, first, the raining set was divided into two sets: the positive 
training and the negat. The density 𝜌𝜌(𝑥𝑥!)  of the 𝑥𝑥! points was defined as the number 
of data points in its neighborhood. We have: 

𝜌𝜌(𝑥𝑥!) = 𝑁𝑁(𝑥𝑥) = 𝑁𝑁({𝑥𝑥|‖𝑥𝑥 − 𝑥𝑥!‖ ≤ 𝑇𝑇})           (9)  
This state refers to the Euclidean distance and the cardinality of the 𝑥𝑥! set. T is the 

threshold of the distance between two classes (𝑆𝑆*, 𝑆𝑆+). Therefore, the positive density 
𝜌𝜌*(𝑥𝑥!) and the negative density 𝜌𝜌+(𝑥𝑥!) are stated as follows respectively: 
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𝑁𝑁({𝑥𝑥|‖𝑥𝑥 − 𝑥𝑥!‖ ≤ 𝑎𝑎. 𝑑𝑑, 𝑥𝑥 ∈ 𝑆𝑆+})	∀𝑥𝑥! ∈ 𝑆𝑆*
𝑁𝑁({𝑥𝑥|‖𝑥𝑥 − 𝑥𝑥!‖ ≤ 𝑎𝑎. 𝑑𝑑, 𝑥𝑥 ∈ 𝑆𝑆*})	∀𝑥𝑥! ∈ 𝑆𝑆+

             (10) 

Where 𝑑𝑑 is the distance between the centers of two classes (𝑆𝑆*, 𝑆𝑆+) and 𝑎𝑎   is a 
predetermined coefficient related to the threshold T in eq (1). It indicates the data's 
attitude 𝑥𝑥!toward its class in the training set. Principally, both (𝑆𝑆*, 𝑆𝑆+)have a small value 
from outliers, and the standard data point, without any noise, S has a considerable and 
S perim small value. Therefore, the assigned membership value of the data point 𝑥𝑥! 
can be determined by the following membership function: 

𝑆𝑆! =
,!(.")

,!(.")*,#(.")
. ,

!(.")
,!$%&

            (11) 

Where 𝜌𝜌*01.is the highest value 𝜌𝜌*(𝑥𝑥!)for all training data points? 
Figs 6-9 shows the loading data and features extraction workflows, the Main 

algorithm (K-Flod and FSVM classification), FSVM training, and test functions, 
respectively. 
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Fig. 5: Effect of slack variable in SVM performance (Barros, P., Jirak, D., Weber, C., & 
Wermter, S., 2015)
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In eq. (2), C, is a free parameter (defined by the user) and specifies the 
effectiveness of slack variables in determining the margin. The geometric concept of 
a vector machine with a soft margin is shown in Fig. 5. 
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The final SVM hyperplane can be obtained by applying these parameters in the 

central equation of the separator hyperplane. 
If the problem data, in addition, are not linearly separatable, they also have a 

sophisticated distribution, and the SVM with a soft margin not be responsive. The 
mapping method can be used in a higher-dimensional space to solve this problem. 
For this purpose, the proper strategy is to use the kernel trick (Hakamata, A., Ren, F., 
& Tsuchiya, S., 2008, October). 
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In eq. (8), the function 𝐾𝐾(. ) is called the kernel function. Furthermore, if the internal 
multiplication of input data vectors can be modeled with a kernel function, it is no longer 
necessary to know or obtain the mapping function. This state the kernel trick. 

Some of the most usable standard kernel functions are: 
As stated in the previous section, fuzzy membership variables are also free 

parameters of FSVM, which should be considered appropriate values. For this 
purpose, a lower bound must be determined for membership values, indicating the 
sample's lowest value. After that, the main characteristic of the dataset is determined, 
which describes the importance of samples. In the end, the relationship between the 
primary dataset and fuzzy membership values should be well defined; this relationship 
can be described and applied as a mathematical equation. 

The proper choice of fuzzy membership functions in the given problem is significant 
in designing the FSVM classifier. The rule to assign appropriate membership values to 
each data depends on the importance of the data to their classes. In this work, to the 
training set efficiently, first, the raining set was divided into two sets: the positive 
training and the negat. The density 𝜌𝜌(𝑥𝑥!)  of the 𝑥𝑥! points was defined as the number 
of data points in its neighborhood. We have: 

𝜌𝜌(𝑥𝑥!) = 𝑁𝑁(𝑥𝑥) = 𝑁𝑁({𝑥𝑥|‖𝑥𝑥 − 𝑥𝑥!‖ ≤ 𝑇𝑇})           (9)  
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Where 𝑑𝑑 is the distance between the centers of two classes (𝑆𝑆*, 𝑆𝑆+) and 𝑎𝑎   is a 
predetermined coefficient related to the threshold T in eq (1). It indicates the data's 
attitude 𝑥𝑥!toward its class in the training set. Principally, both (𝑆𝑆*, 𝑆𝑆+)have a small value 
from outliers, and the standard data point, without any noise, S has a considerable and 
S perim small value. Therefore, the assigned membership value of the data point 𝑥𝑥! 
can be determined by the following membership function: 

𝑆𝑆! =
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Where 𝜌𝜌*01.is the highest value 𝜌𝜌*(𝑥𝑥!)for all training data points? 
Figs 6-9 shows the loading data and features extraction workflows, the Main 

algorithm (K-Flod and FSVM classification), FSVM training, and test functions, 
respectively. 
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Fig. 6: The flowchart of Loading data and feature extraction in the proposed method
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Fig. 7: The flowchart of the Main algorithm of the proposed approach
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Fig. 8: The flowchart of the FSVM training function
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Fig. 9: The flowchart of the FSVM testing function
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10 

4. Case study 
In this section, the result of the FSVM classification is presented. Due to different 

parameters regulations, they are carefully evaluated, and the results of FSVM 
classification are compared with the conventional SVM. 

𝐸𝐸 = !
"
∑ 𝐸𝐸#$
#%!      (12) 

Note: The k-Fold method was used to confirm the results. This method divides the 
data into several parts. The method is to first all data is divided into k equal (or 
approximately equal) parts. Then, the classification of k times is performed so that one 
of the sections is considered the test group in each repetition, and the rest of the k-1 
group is used as training data for classifying the learning process. In this method, 
practically, after classifying the training, it is asked to predict the accuracy of the 
category of the test sample, then the classification error is calculated for each sample, 
and finally, using the averaging of eq. (29) is measured with the total error of 
classification. 

 
4.1 Effect of R parameters on the accuracy 
As mentioned in the previous section, in FSVM, by defining a membership function 

for each data point on the soft margin of SVM, the membership value called (𝑆𝑆#) is 
allocated. Regarding the value of 𝑆𝑆# more valuable data for SVM, the data is considered 
more valuable for SVM. Therefore, SVM converted to FSVM with data fuzzification. The 
Considered membership function is determined based on the data distance to the 
center of the class so that 𝑑𝑑 is the distance between classes, T is considered the 
neighborhood radius from data, and 𝑟𝑟 = 𝑇𝑇/𝑑𝑑 is a factor of neighborhood radius. This 
factor has a value between 0 and 1, so that fuzzy properties are lost by approaching 0 
and becoming a simple SVM and vice versa. 

In fig. 10 correctness percentage of FSVM is evaluated for each kernel and based 
on the variation of r for all features. In the linear kernel curve, the best correctness 
percentage is obtained for 𝑟𝑟 = 1. Therefore, this value for the r parameter is used as 
follows. 

 
4.2. The effect of free-parameter C changes on the percentage of accuracy 
In eq. (15) parameter C has the role of the regulation parameter. Whatever 

parameter is more significant, the border of the cloud is narrower, and the number of 
unclassified points is lowered. This section discusses the effect of this parameter 
classification on the FSVM classification's accuracy rate. As shown in the following 
graphs, bandwidth, average, variance, and wavelet features show an average 
correctness percentage for FSVM with r=1 and 𝐶𝐶 ∈ [10	100]. Variation of parameter C 
for each feature has a different effect on the accuracy rate of their results. In fig. 11, 
the wavelet feature has the highest accuracy rate at the change of parameter C in a 
range of 30 to 80. With some accuracy in the graphs, it can be concluded that the 
wavelet curve has the highest accuracy percentage. 
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Fig. 10: The percentage accuracy of different r ranges for different types of kernels
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4.3. Comparing the results of SVM and FSVM classifications in physiological signals
Various methods were investigated for extracting the characteristics of physiologi-

cal signals. A category of features is extracted in the time domain, including average 
and variance, and the second category of these characteristics are frequency and 
time-frequency, such as Fourier and Violet, respectively. The final category of nonlin-
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Fig.11: Comparison of correctness percentage in FSVM classifier by change of 
parameter C for MLP kernel and  r=1

ear features includes the fractal dimension of physiological signals. As described in 
the previous section, FSVM is used for categorization. This paper uses a linear FSVM 
and nonlinear FSVM containing square, polynomials, multi-perceptron, and Gaussian 
kernels.

Table 1 shows the results for the correctness of each kernel related to classifying 
SVM and arousal index. The fractal feature obtains the best classification correctness 
percentage among the extracted features. As shown in Table 1, the multi-perceptron 
kernel has the highest accuracy percentage among the various kernels for the Arousal 
attribute. Alpha, Gamma, and Theta features are summarized in bandwidth feature 
space. According to the result of table 1, by considering the multi-perceptron kernel 
as the best responsive kernel in SVM, the Gamma feature has the best accuracy rate 
among the frequency space features. Moreover, energy and entropy features have 
better accuracy than multi-perceptron kernels.
Table 1: The mean of correctness (and standard deviation) of physiological signals classifica-
tion for Arousal with SVM classification. 
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(3.0)
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(3.0)
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(8.5)Linear
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48.5
(4.1)

46.8
(3.4)

52.9
(4.3)

48.8
(4.2)

49.1
(5.9)

56.2
(4)

50.2
(3.4)

50.8
(3.4)

48.4
(4.3)

45.2
(1.9)

47.1
(3.1)

59.7
(8.5)Square

45.4
(4.6)

44.5
(3.7)

52.6
(4.8)

47.1
(4.2)

46.9
(2.4)

52.2
(2.6)

51.4
(4.5)

51.8
(5)

50
(3.0)
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(2.3)

50.4
(4.3)

59.7
(8.5)
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51.4
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(3.7)
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(4.2)
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(5.1)

48.6
(3.8)
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(3.6)

50.3 
(5.2)

59.4
(8.5)

Gauss-
ian 

(RBF) 

In table 2, the result of the FSVM classification for  is given for all kernels and all 
types of features. According to these results, the wavelet feature in the polynomial 
kernel has the highest accuracy rate (65.32%). Moreover, the entropy feature in the 
linear kernel has the highest accuracy rate. Regarding the frequency space feature, 
the linear kernel has better results than the other kernels.

Table 2: The mean of the correctness (and variance) of physiological signals classification for arousal 
with the FSVM classification.
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(10.58)Square
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(13.56)

58.03
(21.84)

54.9
(15.7)
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Poly-
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63.11
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(10.74)

60.83
(10.58)
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ian 

(RBF) 

Table 3 indicates the result of the correctness percentage for each kernel related 
to SVM classification for the valence index. According to table 3, among the extracted 
features, the fractal feature indicates the highest accuracy rate for all kernels except 
multi-perceptron, while the Beta feature of the multi-perceptron kernel has an accuracy 
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rate of %59.02. The Beta kernel has the highest accuracy rate among other features 
in a frequency domain feature with a multi-perceptron kernel. In the time-frequency 
domain, the energy feature with a polynomial kernel had the highest accuracy rate 
compared with the entropy feature.

By comparing various kernels, it is observed that the polynomial kernel has a better 
response concerning the average accuracy percentage, and the rate of dispersion is 
lower (standard deviation).

Table 4 summarizes the results of FSVM r=1 for all kernels and features. The entro-
py feature in linear kernel dedicated the highest accuracy rate (%66.31).

Table 3: The mean of correctness (and variance) of physiological signal classification for Valence 
with SVM class
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Table 4: The mean of the correctness (and standard deviation) of physiological signals classifi-
cation for valence with the FSVM classification.
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54.54
(16)

53.73
(10.1)

55.72
(31)

51.21
(5.3)

55.57
(18.7)

53.11
(17)

55.1
(22)

53.8
(13)

55.74
(20)
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59.1
(14)

59.1
(13)
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4.4. The results of the classification of brain signals
In the previous sections, we discussed various methods for feature extraction of 

EEG signals. A category of features in the time domain contains average and variance, 
and another in the frequency and time-frequency domain contains Fourier and wave-
let. Moreover, the fractal feature is a nonlinear feature that is extracted. We applied lin-
ear and nonlinear SVM for classification with square, polynomial, multi-perceptron, and 
Gaussian kernels. Tables 5 and 6 present the correctness percentage of these kernels 
for arousal and valence index. According to table 5, for the arousal index, extracted 
entropy feature with linear kernel has the best response %66.42.

Table 6 presents the results of SVM classification for the valence index. According 
to this table, the entropy feature for the valence index has the highest accuracy rate of 
%64.26, which is related to the Gaussian kernel.

Table 5: The average validity (and maximizing) of the brain signals classification for arousal by 
the classification of FSVM.
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Table 6: The mean percentage accuracy (and standard deviation) of the Brain Signal Classification for 
Valence by the classification of FSVM.
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58.97
(11.72)

60.75
(10.6)

54.86
(17.28)

61.42
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(20.94)

57.86
(7.35)
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(13.84)
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57.94
(10.09)

56.14
(5.35)
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(22.16)

52.27
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56.19
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(25.37)
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(14.35)
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(14.35)

59.1
(14.35)

59.34
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By comparing the results of physiological signals (EEG and peripheral) with only 
EEG signals, it is evident that the range of accuracy rate is similar with very little dif-
ference. It can be stated that the feature space of EEG signals is rich with information 
related to emotion. Therefore, 32 EEG channels of the physiological signal can be 
used instead of 40 channels. Regarding selecting the appropriate feature extraction, 
it is notable that the valuable feature is selected according to the kernel because the 
extraction of features by various kernels is different, and it is impossible to have a 
decisive decision. However, the features which are selected give a relevant answer.

4.5. The comparisons of proposed methods with recent works
The following Table 7 provides a comparative analysis of the latest literature research 

provided in (Egger, M., Ley, M., & Hanke, S., 2019) and our proposed forecasting meth-
od. The main keywords used in (Egger, M., Ley, M., & Hanke, S., 2019) for reviewing 
the literature research include emotion recognition, classification, prediction, and arec-
tive computing. The results in Table 7 include the methods name, number of participants 
(n), measured emotion, stimulus, extracted features, classification method, and achieved 
accuracy. The literature researches with imprecise details regarding the features or ac-
curacy calculation were excluded from this comparison. Utilizing the proposed method, 
the arousal and valence parameters obtained reach a suitable accuracy compared to the 
other methodologies. Given the number of attributes and participants, it can be concluded 
that the proposed method is more accurate and stable than the other mentioned methods. 
Table 7: Comparison results of the proposed method along with the recent studies related to 
emotion recognition measuring physiological data (Electrocardiography (ECG), Heart Rate 
Variability (HRV), Electroencephalography (EEG), Facial Recognition (FR), Forehead Bio-Signal 
(FBS), Speech Recognition (SR), Electrodermal Activity (EDA), Skin Temperature (SKT), Blood 
Volume Pulse (BVP), Respiration (RSP))

Year
Method              

n  Emotion Stimulus Feature Classification Accuracy

 Agrafioti, F., 
Hatzinakos, D., 
& Anderson, A. 

K. (2011)
2012 ECG 31

Excitement,
erotica, 
disgust,

fear, gore,
neutral

Passive: 
IAPS

Active: 
Video
games

Instanta-
neous

frequency, 
local

oscillation

Linear 
discriminants,
leave-one-out
cross-valida-

tion

52.41 % 
passive,
78.43 % 
active
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Guo, H. W., 
Huang, Y. S., 
et al. (2016, 

October)
2016 ECG 25

Sad, angry,
fear, happi-

ness,
relax

Movie 
clips

Time, 
frequency, 
poincare, 

statics
SVM 56.9 %

Guo, H. W., 
Huang, Y. S., 
et al. (2016, 

October)
2016 EEG 21 Sad, scared,

happy, calm IAPS

5 Frequency
bands (delta,
theta, alpha,
beta, gam-

ma)

KNN, SVM 55 % KNN,
58 % SVM

Den Uyl, M. J., 
& Van Kuilen-

burg, H. (2005, 
August)

2005 FR 1

Happy, 
angry,

sad, sur-
prised,
scared, 

disgusted,
neutral

Video 
clips

AAM appear-
ance vector
(locations of
key points 

and
texture)

ANN (Noldus
FaceReader) 89 %

Naji, M., Firooz-
abadi, M., & 

Azadfallah, P. 
(2014)

2013

ECG,
Forehead
Bio-Sig-

nal
(FBS)

25
Soothing,
engaging,
annoying,

boring
Music 4 FBS, 8 ECG

features Binary SVM

88.87 %
(FBS:

47.2 % 
ECG:

86.63 %)

Dai, K., Fell, 
H. J., & 

MacAuslan, J. 
(2008)

2008 SR 7

Neutral, hot
anger, happi-

ness,
sadness, in-
terest, panic

Reading 
emo-
tional 

speech
and tran-
scripts

62 Features Bayesian net-
work

80.46 %
(happy 

and
sadness),
62 % (4

emotions),
49 % (6

emotions)

Kessous, L., 
Castellano, G., 
& Caridakis, G. 

(2010)
2009

FR,
SR,

gestures
10

Anger, de-
spair,

interest, 
pleasure, 
sadness,

irritation, joy,
pride

Guided 
acting

accord-
ing to

experi-
ment
script

26 (FR),
18 (SR),

18 (gestures)
Bayesian net-

work

48.3 % 
(FR),

57.1 % 
(SR),

67.1 % 
(gestures), 

78.3 % 
(multimod-

al)

Haag, A., 
Goronzy, S., 
Schaich, P., 

& Williams, J. 
(2004, June)

2004

EMG,
EDA,
SKT,
BVP,
ECG,
RSP

1 Arousal,
valence IAPS 7 Features ANN

89.73 %
(arousal),
63.76 %
(valence)

Katsis, C. D., 
Katertsidis, N., 
Ganiatsas, G., 
& Fotiadis, D. I. 

(2008)

2008
EMG,
ECG,
RSP,
EDA

10

High stress,
low stress, 
disappoint-

ment,
euphoria

Simulat-
ed 

racing 
condi-

tion

13 Features SVM, ANFIS
79.3 %
(SVM),
76.7 %
(ANFIS)

Maaoui, C., 
& Pruski, A. 

(2010)
2010

BVP,
EMG,
EDA,
SKT,
RSP

10

Amusement,
contentment,
disgust, fear, 

neutral, 
sadness

IAPS 30 Features SVM 46.5 %

Pro-
posed 
Method

  32 Arousal,
valence

Audio-Vi-
sual 

Stimuli 
(musical 
video)

40 Features FSVM
70.09 %
(arousal),
74.47 %
(valence)
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An overview of the benefits, limitations, and application area of the methods com-
pared with the proposed approach is shown in Table 8.
Table 8: An overview of the methods’ benefits, limitations, and application area compared with 
the proposed approach (Egger, M., Ley, M., & Hanke, S., 2019).

Modality Benefits Limitations Application Area

EEG
allows measurements on

impaired patients
complex installation,

maintenance of equipment prone to 
movement artifacts

lab conditions

FR contact-less, tracking of
multiple persons possible

requires a camera frontal
to the face, prone to be

deliberately falsified

lab conditions, work-
place, intelligent homes, public

spaces

VR contact-less, casual 
measurement

microphone necessary,
prone to background noise

the broad field of application

SR contact-less, casual 
measurement communication necessary the broad field of application

ECG

data acquisition during
cardiac check-up 

possible,
mobile measurements

higher accuracy in stationary 
measurement,

movement artifacts in
mobile systems

lab conditions, every day
use, sports activities

BVP

highly versatile method
due to the small size of 
sensors allows assess-

ment
of other health-related

parameters

depending on application
area prone to artifacts
(i.e., movement during

sport)

lab conditions 
everyday use, sports

activities 

EDA

a good indicator of 
stress,

the distinction between 
conflict and no-conflict 

situation 

measures only arousal, influenced 
by temperature,

needs In calibration
lab conditions,

everyday activities 

RSP
simple installation, can

indicate panic, fear, con-
centration or depression

the distinction of broad emotive 
spectrum discult the broad field of application

SKT
versatile data acquisition

possible 
measures only arousal, the relative-

ly slow indicator for
emotive states depend
on external temperature

lab conditions, workplace, smart 
homes, public

spaces

EMG
allows measurements on

patients with atypical
communication 

measures only valence,
discult installation, amplitudes vary 

on chosen
measurement location

lab conditions

A full review of the above methods is presented in (Egger, M., Ley, M., & Hanke, 
S., 2019).

5. Summaries and Conclusions
This paper proposes a modified FSVM classification-based approach to recognize 

emotional states based on the physiological signal in the FSVM method. The main 
contribution of this study includes applying various data extraction indexes and prop-
er kernels for the FSVM classification method and evaluating the signal’s richness in 
experimental tests. In the proposed method, FSVM is applied to solve the problem of 

Sara Mahdi, et al.



315

emotional state diagnosis by using physiological signals. Initially, while the signals 
are preprocessed, various indexes in time and frequency domains are used for data 
extraction. Then, by formulating the FSVM classifier, proper nonlinear kernels are used 
to improve results, and free parameters r and C are considered. The obtained result 
shows that the performance of FSVM concerning the conventional SVM is impressive.

Furthermore, the results show that proper values for free parameters are  r=1 and 
C=40. Another significant result obtained from this study is that EEG signals were 
rich enough for data classification, and 8 peripheral signals did not affect the correct-
ness percentage of classification. The developed emotional recognition method is also 
compared with the existing state-of-the-art techniques for accuracy. The results show 
an accuracy improvement for the proposed model.
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