
87

Multi-Start Jaya Algorithm for Software
Module Clustering Problem

Kamal Z. Zamli1, Abdulrahman Alsewari2, Bestoun S. Ahmed3

1 IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering,
Universiti Malaysia Pahang, Pahang, Malaysia, kamalz@ump.edu.my
2 Faculty of Computer Systems and Software Engineering,Universiti Malaysia Pahang,
Pahang, Malaysia, alsewari@ump.edu.my
3 Department of Computer Science, Faculty of Electrical Engineering, Czech Technical
University, Prague, Czech Republic, albeybes@fel.cvut.cz

*Correspondence: Kamal
Z. Zamli, IBM Centre of
Excellence, Faculty of

Computer Systems and
Software Engineering,

Universiti Malaysia
Pahang, Pahang,

Malaysia, kamalz@ump.
edu.my

Abstract
Jaya algorithm has gained considerable attention lately due to
its simplicity and requiring no control parameters (i.e. parameter
free). Despite its potential, Jaya algorithm is inherently
designed for single objective problems. Additionally, Jaya is
limited by the intense conflict between exploration (i.e. roams
the random search space at the global scale) and exploitation
(i.e. neighborhood search by exploiting the current good
solution). Thus, Jaya requires better control for exploitation and
exploration in order to prevent premature convergence and
avoid being trapped in local optima. Addressing these issues,
this paper proposes a new multi-objective Jaya variant with a
multi-start adaptive capability and Cuckoo search like elitism
scheme, called MS-Jaya, to enhance its exploitation and
exploration allowing good convergence while permitting more
diverse solutions. To assess its performances, we adopt MS-
Jaya for the software module clustering problem. Experimental
results reveal that MS-Jaya exhibits competitive performances
against the original Jaya and state-of-the-art parameter free
meta-heuristic counterparts consisting of Teaching Learning
based Optimization (TLBO), Global Neighborhood Algorithm
(GNA), Symbiotic Optimization Search (SOS), and Sine Cosine
Algorithm (SCA).

Keywords: Search based Software Engineering, Software
Module Clustering Problem, Parameter Free Meta-Heuristic
Algorithm, Jaya Algorithm, Computational Intelligence

1. Introduction
Solving complex multi-objective optimization problems can be painstakingly

difficult endeavor considering multiple and conflicting design goals. A growing
trend in utilizing meta-heuristic algorithms to solve these problems has been
observed as they have shown considerable success in dealing with tradeoffs

Azerbaijan Journal of High Performance Computing, Vol 1, Issue 1, 2018, pp. 87-112
https://doi.org/10.32010/26166127.2018.1.1.87.112

88

between conflicting design goals. Many multi-objective meta-heuristic algorithms
have been developed in the past 25 years. Most of these algorithms have merits,
but they require tuning of their specified control parameters. For example, Genetic
Algorithm [1] require substantial tuning for population size, mutation and cross
over rate. The same issue also arises in the case of Particle Swarm Optimization [2]
which depends on population size, inertia weight, social and cognitive parameters
as parameters. In similar manner, Harmony Search [3] requires tuning of harmony
size, harmony memory consideration rate, and pitch adjustment. As for Ant Colony
[4], the calibration of evaporation rate, pheromone influence, and heuristic influence
are essential. Concerning Cuckoo Search [5], there is a need to tune the elitism
probability. In many cases, improper tuning for all of these specific parameters
undesirably increases computational efforts as well as yields sub-optimal solutions.
As a result, many researchers have advocated the adoption of parameter free
meta-heuristic algorithms [6-9].

Jaya algorithm [6] is a recently developed parameter free population based
meta-heuristic algorithm. Despite its potential, Jaya algorithm is inherently designed
for the single objective problem. To this end, there are two common methods for
dealing with multi-objective problems within a meta-heuristic algorithm: aggregative
and non-aggregative [10]. The former method combines all the objectives into one
weighted function. This main drawback of this method is that only one solution is
provided. To gain the benefit and tradeoffs of multiple sets of solutions, the method
needs to be run multiple times. Another disadvantage of this method is that it is
unable to deal with concave Pareto front in multi-objective problems[11]. Unlike
the former method, the latter method optimizes all the objectives simultaneously.
Here, a set of optimal solutions is formed, which has a better value for at least one
objective (i.e. non-dominating), forming a Pareto front set. As such, this method
provides the multiple tradeoffs (of Pareto-optimal) solutions (even in a single run)
that can be chosen based on the order of importance of objectives. Thus, in this
paper, we consider a non-aggregative method for our work.

Apart from the need to effectively deal with multi-objective problems, the current
Jaya algorithm is limited by the intense conflict between exploration (i.e. roams
the random search space at the global scale) and exploitation (i.e. neighborhood
search by exploiting the current good solution). For this reason, Jaya requires
better control for exploitation and exploration to prevent premature convergence
and avoid being trapped in local optima.

Addressing the aforementioned issues, the contributions of this paper can be
summarized as follows:

• A new Jaya algorithm variant, called MS-Jaya with multi-start adaptive
capability and Cuckoo search like elitism scheme [5].

• Performance comparison of MS-Jaya with other state-of-the-art parameter free
multi-objective algorithms (including the original Jaya [6], Teaching Learning based
Optimization (TLBO)[7], Global Neighborhood Algorithm (GNA) [12], Symbiotic
Optimization Search (SOS) [8], and Sine Cosine Algorithm (SCA)[9]) for software
module clustering problem.

The paper is organized as follows. Section 2 presents the theoretical framework

Kamal Z. Zamli, et al.

89

for software module clustering as a multi-objective optimization problem. Section 3
describes the related work on software module clustering. Section 4 highlights the
original Jaya algorithm along with its known variants and the general design of MS-
Jaya. Section 5 outlines our adaptation of MS-Jaya for software module clustering
problem. Section 6 presents our benchmarking experiments. Section 7 discusses
our experimental observations. Finally, Section 8 gives our concluding remarks
along with the scope for future work.

2.Software Module Clustering Problem as Multi-Objective Optimization Problem
Software module clustering problem can be defined as the problem of partitioning

modules into clusters based on some predefined quality criterion. Typically, the
quality criterion for software module clustering problem relates to the concept
of coupling and cohesion. Coupling is a measurement of dependency between
module clusters whilst cohesion is the measurement of the internal strength of a
module cluster. Thus, a good cluster distribution aids in functionality-cluster-module
traceability provides easier navigation between sub-systems and enhances source
code comprehension.

To evaluate the cluster distribution, a software system is usually represented as
a Module Dependency Graph (MDG)[13]. The MDG is a directed graph in which
modules are shown as nodes, dependencies are shown as edges, and clusters are
partitions. Sometimes, weights are assigned to edges to denote the strength of the
connection between the edge source and target nodes. For unweighted MDG, the
weight is always set to 1. The coupling of a cluster can be calculated by summing
the weight of external edges leaving or entering a cluster partition (termed inter-
edges). Meanwhile, cohesion is calculated by summing the internal edges where the
source and target modules belonging to the cluster partition (termed intra-edges).
Combining coupling and cohesion, Mancoridis and Mitchell [13] (and later refined
by Praditwong et al [14]) define Modularization Quality measure (MQ) as the sum
of the ratio of intra-edges and inter-edges in each cluster, called Modularization
Factor (MFk) for cluster k. MFk can be formally defined as follows:

where i is the weight of intra-edges and j is that of inter-edges. The term 1/2j is to
split the penalty of inter-edges across the two clusters that are connected by that
edge. The MQ can then be calculated as the sum of MFk as follows:
when n is the number of clusters.

Hypothetical software comprising of 8 modules is depicted in Figure 1 to illustrate
how the clustering of software modules works. In this case, the eight modules are

Azerbaijan Journal of High Performance Computing, 1(1), 2018

90

clustered into two set of clusters. Given the clusters on the left, the MQ is 1.466
with n=2. On the other hand, given the clusters on the right, the MQ is 1.500 with
also n=2. Based on a single objective of maximizing MQ, it can be said that the
clusters on the right are better than those on the left. The challenge is to find the
combination of clusters (i.e. from 2 to the number of modules -1) that would give
the highest MQ value. It should be noted that the MQ measure is to find a balance
between coupling and cohesion, but not to completely remove them. For instance,
one can have only 1 cluster or n completely independent single module clusters
to have zero coupling, but such an approach does not aid in functionality-cluster-
module traceability or source code navigation and comprehension.

As maximizing cohesion and minimizing coupling are two conflicting objectives,
software module clustering can be reformulated into multi-objective problem [14]
as maximizing cluster approach (MCA) and equal-cluster approach (ECA). The
objectives identified under MCA are:

Maximizing the sum of intra-edges of all clusters
Minimizing the sum of inter-edges of all clusters
Maximizing the number of clusters
Maximizing MQ
Minimizing the number of isolated clusters (i.e. getting as much clusters as

possible).
The MCA approach focuses on achieving high cohesion and low coupling while

maximizing the number of clusters.
Meanwhile, the objectives identified under ECA are:
Maximizing the sum of intra-edges of all clusters

Figure 1. Software Module Clustering Problem

Kamal Z. Zamli, et al.

91

Minimizing the sum of inter-edges of all clusters
Maximizing the number of clusters
Maximizing MQ
Minimizing the difference between the minimum and maximum number of

modules in a cluster (i.e. getting equal size clusters).
The ECA approach also focuses on achieving high cohesion and low coupling.

In doing so, the approach targets equal size clusters.

3. Related Work on Software Module Clustering
Software module clustering has been used in the literature within software reverse

engineering to assess the software comprehension, evolution, and maintenance
[15-17]. In particular, the interest on software module clustering problem has been
advocated by recent emergence of the new field called Search based Software
Engineering (SBSE)[18-21]. Much work has been done in the maintenance part
to help to identify and group (i.e., cluster) those modules (sometimes called sub-
systems) with common features. Evidence shows that modularized software could
lead to better development and maintenance process [22, 23]. In fact, the non-
proper and badly modularized code could be a strong potential reason for schedule
deviation of maintenance and testing in the software project.

With the different complex functionalities and features that the modern software
systems provide, the size of the system (concerning lines of code and module
numbers) has been growing dramatically. This, in turn, leads to having dramatically
many different arrangements (i.e., solutions) of the modules. At this stage, software
module clustering has been considered as a graph-partitioning problem. The
graph-partitioning problem, in fact, is an NP-hard problem [13, 14]). Hence, there
is no exact method to solve this problem. To this end, different algorithms have
been designed and implemented to find near optimal solution with reasonable
execution time.

Some early attempts toward the solution followed the classical techniques for
clustering such as K-means combined with greedy approach [24]. However, these
attempts seem to be infeasible due to the poor exploration of all solutions that
prevent the improvement of the current solution towards better solutions. Meta-
heuristic based algorithms showed impressive results as compared to the classical
approach due to their ability for exploration and exploitation towards a better
solution. Hill climbing (HC) is one of the first algorithms used by Mancoridis and
Mitchell for this purpose (i.e. based on a tool called Bunch [13]). The algorithm starts
by a random partition (i.e., search space) of MDG. Then, the algorithm rearranges
the module in different ways to find a better arrangement with higher MQ. Here, the
better partition is always kept and the algorithm iterates and updates the partitions
based on this better partition. The algorithm stops when better partition could
not be found after several iterations. This procedure of work is almost the basic
procedure for most of the meta-heuristic algorithms with the variation of the update
mechanism of the search space.

HC has produced better results as compared to classical greedy clustering
due to the randomness and better exploration and exploitation, in turn, permitting

Azerbaijan Journal of High Performance Computing, 1(1), 2018

92

good quality solutions. HC has also undergone different improvements in other
implementation later by Mahdavi et al [25]. In fact, HC produced superior results
other concerning the solution quality and execution time. However, it suffers from
the premature convergence that leads to local optima. Genetic algorithms (GA)
have also been used for software module clustering [26, 27]. However, it suffers
from the parameter tuning of the algorithm that in turn to produce poor results in
different experiments.

In fact, these algorithms have treated the software module clustering as a single-
objective optimization problem. Here, the low coupling and high cohesion demand
are combined into one objective of MQ. However, as previously illustrated in
Section 2, we can formulate the problem as a multi-objective optimization problem.
Praditwong et al [13] has pioneered this approach to generate more robust results
than the single objective by using Pareto optimality concept. This new multi-
objective nature of the problem has motivated other researchers to implement
hyper-heuristic based algorithms for module clustering. For instance, Kumari and
Srivinas [28] has implemented a multi-objective hyper-heuristic Genetic Algorithm
(MHypGA) for software module clustering. The research produced promising results
as compared to other algorithms in term of quality of solutions and computational
time.

More recently, Huang e al [29] has proposed a multi-agent evolutionary algorithm
to solve this problem. The research adopts three evolutionary operators for the
agents, namely competition, cooperation, and self-learning. The algorithm has
been compared with two single-objective and two multi-objective algorithms. The
algorithm outperforms the other algorithms in many cases. However, the algorithm
needs more evaluation thought more case studies. In addition, the algorithm uses
only MQ as the objective to solve, while there could be other factors that affect the
quality towards even better results.

4. Introducing MS-Jaya
The following subsections highlight the original Jaya along with its existing variant

as well as the new multi-start multi-objective adaptive version, MS-Jaya.

4.1 The Original Jaya
Let f(x) be the objective function to be minimized (or maximized). With f(x)best as

the best solution and f(x)worst as the worst solution so far and X"
($)is the value of ith variable

(i.e. i=1,2…n), then the Jaya algorithm defines the next X"
($&')update as follows:

X"
($&') = X"

($) + r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0 X123-$-­‐‑ X"

$ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 3)

where X+,-$ is the value of the variable for f(x)best and X123-$ is the value of the variable
for f(x)worst and X"

$&' is the updated ith value of X"
$. Here, r' and r0 are the two

random scaling factor in the range [0,1]. The value X"
($&') is accepted only if it gives

better objective function value than	
 X"
($). Figure 2 outlines the pseudo code for the Jaya

algorithm.

Input: the population X = {X1, X2… Xn}
Output: Xbest and the updated population X ´= {X1´, X2´… Xn´}
[1]. Begin
[2]. Initialize random populations X
[3]. Set initial X+,-$ = X8 and initial X9223 = X+,-$
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. For population count, i =1 to population size, n
[7]. Generate random values of r' and r0 between [0,1]
[8]. Update the current population using X"

($&') using Eq. 3
[9]. If f(X"

($&'))>	
 f(X"
($)) then // assuming maximization problem

[10]. X"
($) = 	
 X"

($&')
[11]. If f(X"

($&'))>	
 f(X+,-$) then
[12]. 	
 	
 X+,-$ =	
 X"

($&')
[13]. EndIf
[14]. Else
[15]. If f(X"

($))>	
 f(X+,-$) then
[16]. 	
 X+,-$ =	
 X"

($)
[17]. EndIf
[18]. If f(X"

($))<	
 f(X9223) then
[19]. 	
 	
 	
 X123-$ =	
 X"

($)
[20]. EndIf
[21]. EndIf
[22]. EndFor
[23]. EndWhile
[24]. Return the updated population, X and the best result (Xbest)
[25]. End

Figure 2. Pseudo Code for Jaya Algorithm

As seen in line 10 in Figure 2, the Jaya algorithm exploits both X+,-$	
 and X123-$ as

part of its transformation equation. Unlike other meta-heuristic algorithm, the Jaya
algorithm uses only a single transformation equation to perform the search updates.
Thus, the main strength of Jaya algorithm is its simplicity.

To allow exploration of the search space, the terms “r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0(X123-$-­‐‑ X"

($))”
needs to be sufficiently large. Similarly, the terms “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))”

must be small enough to allow steady exploitation. Analysing these aforementioned
terms, the Jaya algorithm seems to provide poor control of exploration and exploitation.
To be specific, when the difference between “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))” is small,

the search process tends to get trapped in local optima hindering further exploration.
In the current form, Jaya does not provide any mechanism to allow jumping out of local
optima.

Additionally, although useful to ensure diversity updates, the improper random
combination of the scaling factors r' and r0	
 may unnecessarily make the Jaya
algorithm wander back and forth (i.e. creating intense competition) between
exploration and exploitation. This phenomenon can be counter-productive especially
when the current search is converging.

Tackling these issues, the next sub-section reviews some multi-objective Jaya
variants along with their applications followed by our proposed multi-objective MS-
Jaya.

Kamal Z. Zamli, et al.

.

93

4. Introducing MS-Jaya
The following subsections highlight the original Jaya along with its existing variant

as well as the new multi-start multi-objective adaptive version, MS-Jaya.

4.1 The Original Jaya
Let f(x) be the objective function to be minimized (or maximized). With f(x)best as

the best solution and f(x)worst as the worst solution so far and X"
($)is the value of ith variable

(i.e. i=1,2…n), then the Jaya algorithm defines the next X"
($&')update as follows:

X"
($&') = X"

($) + r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0 X123-$-­‐‑ X"

$ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 3)

where X+,-$ is the value of the variable for f(x)best and X123-$ is the value of the variable
for f(x)worst and X"

$&' is the updated ith value of X"
$. Here, r' and r0 are the two

random scaling factor in the range [0,1]. The value X"
($&') is accepted only if it gives

better objective function value than	
 X"
($). Figure 2 outlines the pseudo code for the Jaya

algorithm.

Input: the population X = {X1, X2… Xn}
Output: Xbest and the updated population X ´= {X1´, X2´… Xn´}
[1]. Begin
[2]. Initialize random populations X
[3]. Set initial X+,-$ = X8 and initial X9223 = X+,-$
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. For population count, i =1 to population size, n
[7]. Generate random values of r' and r0 between [0,1]
[8]. Update the current population using X"

($&') using Eq. 3
[9]. If f(X"

($&'))>	
 f(X"
($)) then // assuming maximization problem

[10]. X"
($) = 	
 X"

($&')
[11]. If f(X"

($&'))>	
 f(X+,-$) then
[12]. 	
 	
 X+,-$ =	
 X"

($&')
[13]. EndIf
[14]. Else
[15]. If f(X"

($))>	
 f(X+,-$) then
[16]. 	
 X+,-$ =	
 X"

($)
[17]. EndIf
[18]. If f(X"

($))<	
 f(X9223) then
[19]. 	
 	
 	
 X123-$ =	
 X"

($)
[20]. EndIf
[21]. EndIf
[22]. EndFor
[23]. EndWhile
[24]. Return the updated population, X and the best result (Xbest)
[25]. End

Figure 2. Pseudo Code for Jaya Algorithm

As seen in line 10 in Figure 2, the Jaya algorithm exploits both X+,-$	
 and X123-$ as

part of its transformation equation. Unlike other meta-heuristic algorithm, the Jaya
algorithm uses only a single transformation equation to perform the search updates.
Thus, the main strength of Jaya algorithm is its simplicity.

To allow exploration of the search space, the terms “r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0(X123-$-­‐‑ X"

($))”
needs to be sufficiently large. Similarly, the terms “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))”

must be small enough to allow steady exploitation. Analysing these aforementioned
terms, the Jaya algorithm seems to provide poor control of exploration and exploitation.
To be specific, when the difference between “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))” is small,

the search process tends to get trapped in local optima hindering further exploration.
In the current form, Jaya does not provide any mechanism to allow jumping out of local
optima.

Additionally, although useful to ensure diversity updates, the improper random
combination of the scaling factors r' and r0	
 may unnecessarily make the Jaya
algorithm wander back and forth (i.e. creating intense competition) between
exploration and exploitation. This phenomenon can be counter-productive especially
when the current search is converging.

Tackling these issues, the next sub-section reviews some multi-objective Jaya
variants along with their applications followed by our proposed multi-objective MS-
Jaya.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

94

4. Introducing MS-Jaya
The following subsections highlight the original Jaya along with its existing variant

as well as the new multi-start multi-objective adaptive version, MS-Jaya.

4.1 The Original Jaya
Let f(x) be the objective function to be minimized (or maximized). With f(x)best as

the best solution and f(x)worst as the worst solution so far and X"
($)is the value of ith variable

(i.e. i=1,2…n), then the Jaya algorithm defines the next X"
($&')update as follows:

X"
($&') = X"

($) + r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0 X123-$-­‐‑ X"

$ 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 3)

where X+,-$ is the value of the variable for f(x)best and X123-$ is the value of the variable
for f(x)worst and X"

$&' is the updated ith value of X"
$. Here, r' and r0 are the two

random scaling factor in the range [0,1]. The value X"
($&') is accepted only if it gives

better objective function value than	
 X"
($). Figure 2 outlines the pseudo code for the Jaya

algorithm.

Input: the population X = {X1, X2… Xn}
Output: Xbest and the updated population X ´= {X1´, X2´… Xn´}
[1]. Begin
[2]. Initialize random populations X
[3]. Set initial X+,-$ = X8 and initial X9223 = X+,-$
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. For population count, i =1 to population size, n
[7]. Generate random values of r' and r0 between [0,1]
[8]. Update the current population using X"

($&') using Eq. 3
[9]. If f(X"

($&'))>	
 f(X"
($)) then // assuming maximization problem

[10]. X"
($) = 	
 X"

($&')
[11]. If f(X"

($&'))>	
 f(X+,-$) then
[12]. 	
 	
 X+,-$ =	
 X"

($&')
[13]. EndIf
[14]. Else
[15]. If f(X"

($))>	
 f(X+,-$) then
[16]. 	
 X+,-$ =	
 X"

($)
[17]. EndIf
[18]. If f(X"

($))<	
 f(X9223) then
[19]. 	
 	
 	
 X123-$ =	
 X"

($)
[20]. EndIf
[21]. EndIf
[22]. EndFor
[23]. EndWhile
[24]. Return the updated population, X and the best result (Xbest)
[25]. End

Figure 2. Pseudo Code for Jaya Algorithm

As seen in line 10 in Figure 2, the Jaya algorithm exploits both X+,-$	
 and X123-$ as

part of its transformation equation. Unlike other meta-heuristic algorithm, the Jaya
algorithm uses only a single transformation equation to perform the search updates.
Thus, the main strength of Jaya algorithm is its simplicity.

To allow exploration of the search space, the terms “r' X+,-$-­‐‑ X"
($) -­‐‑	
 r0(X123-$-­‐‑ X"

($))”
needs to be sufficiently large. Similarly, the terms “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))”

must be small enough to allow steady exploitation. Analysing these aforementioned
terms, the Jaya algorithm seems to provide poor control of exploration and exploitation.
To be specific, when the difference between “r' X+,-$-­‐‑ X"

($) -­‐‑	
 r0(X123-$-­‐‑ X"
($))” is small,

the search process tends to get trapped in local optima hindering further exploration.
In the current form, Jaya does not provide any mechanism to allow jumping out of local
optima.

Additionally, although useful to ensure diversity updates, the improper random
combination of the scaling factors r' and r0	
 may unnecessarily make the Jaya
algorithm wander back and forth (i.e. creating intense competition) between
exploration and exploitation. This phenomenon can be counter-productive especially
when the current search is converging.

Tackling these issues, the next sub-section reviews some multi-objective Jaya
variants along with their applications followed by our proposed multi-objective MS-
Jaya.

4.2. Review of Jaya Variants and their Applications
Since its inception in 2016, there are at least four known Jaya variants to date.

Similar to other meta-heuristic variants [30], the main Jaya variants available in the
literature can be divided into three categories: modified, hybrid-, and cooperative-
based algorithms.

The modified-based category refers to Jaya variants that alter the original
structure of the algorithm. Rao et al introduce the modified-based category called
multi-objective Jaya (MO-Jaya) [31] integrating the NSGA-II algorithm. MO-Jaya
has been successfully adopted to address multi-objective standard benchmark
functions and solve well-known engineering problems involving wire-electric
discharging, electro-chemical machining, and beam micro-milling process.

Indeed, the modified-based Jaya algorithm (e.g. MO-Jaya) produces sound
results. The main issue for modified-based Jaya is to maintain it as parameter free
algorithm. To be specific, introducing specific parameter controls (i.e. to manage
exploration and exploitation) is not a feasible option as it would weaken the strength
of Jaya (i.e. of being parameter free). For this reason, there is always an inherent
limit on the modification that can be introduced.

The hybrid-based category refers to the integration of one or more meta-heuristic
algorithms with Jaya. Zamli et al explore the hyper-heuristic algorithm based on
Mamdani fuzzy approach (called Fuzzy Inference Selection (FIS)) [32] adopting
Jaya with three other meta-heuristic algorithms (i.e. Teaching Learning based
Optimization (TLBO), Flower Pollination Algorithm (FPA) and Genetic Algorithm
(GA)). FIS has been adopted to solve the interaction testing problem.

Although useful for capitalizing Jaya strength and compensating its deficiencies,
the main limitation of hybrid-based Jaya algorithm (e.g. FIS) is that its implementation
is bulky and computationally heavy. In turn, this may be the limiting factor for its
adoption in other optimization problems.

Finally, cooperative-based category refers to Jaya variants that adopt multi-
swarm populations. Tasks are split in k sub-problems for simultaneous optimization
before combining them as the final result. Rao and More [33] explore self-adaptive
multi-population Jaya algorithm for optimal design of thermal devices. The
population of Jaya can be dynamically modified during the searching process using
the simple rule based selection. Later, Rao and Saroj [34] adopt similar approach
to solve a series of engineering design problems involving welded beam, pressure
vessels, tension spring compression and design speed reducer.

Given its potential, cooperative-based Jaya algorithm can be a useful approach
for solving large NP hard optimization problem. However, there are two potential
issues when dealing with cooperative-based approach. Firstly, deciding on the right
level of task abstraction for k sub-problems can be problematic and often problem
dependent. Secondly, coordination problem of tasks with its corresponding swarm

Kamal Z. Zamli, et al.

95

may lead to unwarranted resource starvation causing deadlock or livelock situation.

4.3. The Design of MS-Jaya
Initially, the search process needs to roam through the search space in an effort to

increase the probability of finding the best solution (i.e. exploration). Towards the end
of the iteration, the search process needs to settle down and exploit the current best
solution (i.e. exploitation). Ideally, when there is no improvement, the search should be
able move to other location (so as to re-explore the search space with the hope to
obtain better solution).

In the context of the current work, the MS-Jaya algorithm enhances the original Jaya
algorithm in four aspects. Firstly, MS-Jaya changes the update 	
 X#

(%&') by scaling the
whole term of “r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑ X#
(%))” as follows:

	
 X#

(%&') = X#
(%) + α r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑	
 X#
(%)) 	
 (Eq. 4)

where α	
 is the actual scaling factor. Initially, the value α is large (i.e. MS-Jaya is
exploring the search space). As the iteration progresses (i.e. MS-Jaya is exploiting),
the value of α will be adaptively reduced as follows:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 α = 	
 M(1 −
t
T
	
)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 5)	

where t is the current iteration, T is the maximum number of iterations and M is the
upper bound constant of the problem at hand.

Secondly, MS-Jaya allows multiple-start of the whole search process again by
resetting the t value (similar to earlier work in [35]). In the case of MS-Jaya, resetting of
t value makes the value of α large again and hence allowing Jaya to jump out of its
current location (and permit re-exploration of the new search location). Potentially,
multi-start approach in MS-Jaya increases the chance to obtain better solution within
the new location in the search space.

Thirdly, MS-Jaya integrates with the Cuckoo search like elitism scheme [5] to ensure
sufficient exploration of the search space. Here, a random fraction of the worst
solutions is abandoned and replace with newly generated solutions.

Finally, MS-Jaya also incorporates the non-dominated approach to address multi-
objective problem. For any two solutions, 	
 X#

(%&') is said to dominate X#
(%) if these

conditions hold:
• 	
 X#

(%&') is not worse than X#
(%) in all objectives

• 	
 X#
(%&') is strictly better than X#

(%) in at least one objective
Unlike single objective problem where the decision can be straightforwardly made

(i.e. on either maximizing or minimizing from a sole objective), deciding on multi-
objective best solution from the set of solutions is difficult. Utilizing the non-dominated
approach, there can be potentially more than one conflicting solutions forming the
Pareto front set. Based on the Pareto front set, the preferred Pareto optimal solution
can be decided. In the case of MS-Jaya, we adopt the same approach in Pareto-
Archived Evolution Strategy (PAES)[36] to generate the Pareto front set. MS-Jaya
replaces the current solution with the new solution if the former is dominated by the
latter or add the new solution to the Pareto front set (termed as PF archive) if it is
dominated by no solution contained in the archive. Here, the purpose of the PF archive
is to keep a historical record of the non-dominated solution found along the search
process. At the start, the PF archive is empty and current (non-dominated) candidate
solution is added to it. Then, the current (non-dominated) candidate solution found will
be compared to the solution stored in the PF archive one-by-one in each iteration. If a
particular candidate solution is dominated by one or more individuals in the PF archive,
then that candidate solution must be discarded (i.e. remove from PF archive). Similarly,
a particular candidate solution dominates any individual in the PF archive, that
individual must be discarded.

Summing up, Figure 3 outlines the pseudo code for the multi-objective MS-Jaya
algorithm.

Input: the population X = {X1, X2… Xn}
Output: the updated population X ´= {X1´, X2´… Xn´} and the Pareto Front archive,

PF = {Xp1, Xp2,… Xpn}
[1]. Begin
[2]. Initialize random populations , X
[3]. Set initial X*+,% = X? and initial X@001 = X*+,%
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. Set threshold ∆	
 = random between [0,1] ×	
 n
[7]. For population count, i =1 to n
[8]. If (non_improvement_count == ∆) then
[9]. t =1
[10]. non_improvement_count =0
[11]. EndIf
[12]. Generate random values of r' and r. between [0,1]
[13]. Calculate α using Eq. 5
[14]. Update the current population using Eq. 4
[15]. If (X#

(%&')) dominates (
 X#
(%)) then

[16]. X#
(%) = 	
 X#

(%&')
[17]. If (X#

(%&')) dominates	
 (X*+,%) then
[18]. 	
 	
 X*+,% =	
 X#

(%&')
[19]. Add X*+,% into PF archive
[20]. EndIf
[21]. Else
[22]. non_improvement_count++;
[23]. If (X#

(%)) dominates (X/01,%) then
[24]. 	
 	
 	
 X/01,% =	
 X#

(%)
[25]. EndIf
[26]. EndIf
[27]. For i=1 to random[0,1]	
 ×	
 n // Cuckoo elitism scheme
[28]. Find the worst, X#

(%)
[29]. Generate randomly	
 X#

(%&')
[30]. If (X#

(%&')) dominates	
 (X#
(%)) then

[31]. X#
(%) = 	
 X#

(%&')
[32]. EndIf
[33]. EndFor
[34]. If X*+,% is dominated by any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[35]. Discard and remove 𝑋𝑋DEFG from the PF	
 archive
[36]. Else If 𝑋𝑋DEFG dominates any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[37]. Discard and remove 𝑋𝑋DEFG_I from the PF	
 archive
[38]. EndIf
[39]. EndFor
[40]. EndWhile
[41]. Return the updated population, X. Report the PF archive and select the

preferred solution
[42]. End

Figure 3. Pseudo Code for Multi-Objective MS-Jaya Algorithm

Azerbaijan Journal of High Performance Computing, 1(1), 2018

96

4.3. The Design of MS-Jaya
Initially, the search process needs to roam through the search space in an effort to

increase the probability of finding the best solution (i.e. exploration). Towards the end
of the iteration, the search process needs to settle down and exploit the current best
solution (i.e. exploitation). Ideally, when there is no improvement, the search should be
able move to other location (so as to re-explore the search space with the hope to
obtain better solution).

In the context of the current work, the MS-Jaya algorithm enhances the original Jaya
algorithm in four aspects. Firstly, MS-Jaya changes the update 	
 X#

(%&') by scaling the
whole term of “r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑ X#
(%))” as follows:

	
 X#

(%&') = X#
(%) + α r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑	
 X#
(%)) 	
 (Eq. 4)

where α	
 is the actual scaling factor. Initially, the value α is large (i.e. MS-Jaya is
exploring the search space). As the iteration progresses (i.e. MS-Jaya is exploiting),
the value of α will be adaptively reduced as follows:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 α = 	
 M(1 −
t
T
	
)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 5)	

where t is the current iteration, T is the maximum number of iterations and M is the
upper bound constant of the problem at hand.

Secondly, MS-Jaya allows multiple-start of the whole search process again by
resetting the t value (similar to earlier work in [35]). In the case of MS-Jaya, resetting of
t value makes the value of α large again and hence allowing Jaya to jump out of its
current location (and permit re-exploration of the new search location). Potentially,
multi-start approach in MS-Jaya increases the chance to obtain better solution within
the new location in the search space.

Thirdly, MS-Jaya integrates with the Cuckoo search like elitism scheme [5] to ensure
sufficient exploration of the search space. Here, a random fraction of the worst
solutions is abandoned and replace with newly generated solutions.

Finally, MS-Jaya also incorporates the non-dominated approach to address multi-
objective problem. For any two solutions, 	
 X#

(%&') is said to dominate X#
(%) if these

conditions hold:
• 	
 X#

(%&') is not worse than X#
(%) in all objectives

• 	
 X#
(%&') is strictly better than X#

(%) in at least one objective
Unlike single objective problem where the decision can be straightforwardly made

(i.e. on either maximizing or minimizing from a sole objective), deciding on multi-
objective best solution from the set of solutions is difficult. Utilizing the non-dominated
approach, there can be potentially more than one conflicting solutions forming the
Pareto front set. Based on the Pareto front set, the preferred Pareto optimal solution
can be decided. In the case of MS-Jaya, we adopt the same approach in Pareto-
Archived Evolution Strategy (PAES)[36] to generate the Pareto front set. MS-Jaya
replaces the current solution with the new solution if the former is dominated by the
latter or add the new solution to the Pareto front set (termed as PF archive) if it is
dominated by no solution contained in the archive. Here, the purpose of the PF archive
is to keep a historical record of the non-dominated solution found along the search
process. At the start, the PF archive is empty and current (non-dominated) candidate
solution is added to it. Then, the current (non-dominated) candidate solution found will
be compared to the solution stored in the PF archive one-by-one in each iteration. If a
particular candidate solution is dominated by one or more individuals in the PF archive,
then that candidate solution must be discarded (i.e. remove from PF archive). Similarly,
a particular candidate solution dominates any individual in the PF archive, that
individual must be discarded.

Summing up, Figure 3 outlines the pseudo code for the multi-objective MS-Jaya
algorithm.

Input: the population X = {X1, X2… Xn}
Output: the updated population X ´= {X1´, X2´… Xn´} and the Pareto Front archive,

PF = {Xp1, Xp2,… Xpn}
[1]. Begin
[2]. Initialize random populations , X
[3]. Set initial X*+,% = X? and initial X@001 = X*+,%
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. Set threshold ∆	
 = random between [0,1] ×	
 n
[7]. For population count, i =1 to n
[8]. If (non_improvement_count == ∆) then
[9]. t =1
[10]. non_improvement_count =0
[11]. EndIf
[12]. Generate random values of r' and r. between [0,1]
[13]. Calculate α using Eq. 5
[14]. Update the current population using Eq. 4
[15]. If (X#

(%&')) dominates (
 X#
(%)) then

[16]. X#
(%) = 	
 X#

(%&')
[17]. If (X#

(%&')) dominates	
 (X*+,%) then
[18]. 	
 	
 X*+,% =	
 X#

(%&')
[19]. Add X*+,% into PF archive
[20]. EndIf
[21]. Else
[22]. non_improvement_count++;
[23]. If (X#

(%)) dominates (X/01,%) then
[24]. 	
 	
 	
 X/01,% =	
 X#

(%)
[25]. EndIf
[26]. EndIf
[27]. For i=1 to random[0,1]	
 ×	
 n // Cuckoo elitism scheme
[28]. Find the worst, X#

(%)
[29]. Generate randomly	
 X#

(%&')
[30]. If (X#

(%&')) dominates	
 (X#
(%)) then

[31]. X#
(%) = 	
 X#

(%&')
[32]. EndIf
[33]. EndFor
[34]. If X*+,% is dominated by any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[35]. Discard and remove 𝑋𝑋DEFG from the PF	
 archive
[36]. Else If 𝑋𝑋DEFG dominates any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[37]. Discard and remove 𝑋𝑋DEFG_I from the PF	
 archive
[38]. EndIf
[39]. EndFor
[40]. EndWhile
[41]. Return the updated population, X. Report the PF archive and select the

preferred solution
[42]. End

Figure 3. Pseudo Code for Multi-Objective MS-Jaya Algorithm

Kamal Z. Zamli, et al.

97

4.3. The Design of MS-Jaya
Initially, the search process needs to roam through the search space in an effort to

increase the probability of finding the best solution (i.e. exploration). Towards the end
of the iteration, the search process needs to settle down and exploit the current best
solution (i.e. exploitation). Ideally, when there is no improvement, the search should be
able move to other location (so as to re-explore the search space with the hope to
obtain better solution).

In the context of the current work, the MS-Jaya algorithm enhances the original Jaya
algorithm in four aspects. Firstly, MS-Jaya changes the update 	
 X#

(%&') by scaling the
whole term of “r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑ X#
(%))” as follows:

	
 X#

(%&') = X#
(%) + α r' X*+,%-­‐‑ X#

(%) -­‐‑	
 r.(X/01,%-­‐‑	
 X#
(%)) 	
 (Eq. 4)

where α	
 is the actual scaling factor. Initially, the value α is large (i.e. MS-Jaya is
exploring the search space). As the iteration progresses (i.e. MS-Jaya is exploiting),
the value of α will be adaptively reduced as follows:

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 α = 	
 M(1 −
t
T
	
)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (Eq. 5)	

where t is the current iteration, T is the maximum number of iterations and M is the
upper bound constant of the problem at hand.

Secondly, MS-Jaya allows multiple-start of the whole search process again by
resetting the t value (similar to earlier work in [35]). In the case of MS-Jaya, resetting of
t value makes the value of α large again and hence allowing Jaya to jump out of its
current location (and permit re-exploration of the new search location). Potentially,
multi-start approach in MS-Jaya increases the chance to obtain better solution within
the new location in the search space.

Thirdly, MS-Jaya integrates with the Cuckoo search like elitism scheme [5] to ensure
sufficient exploration of the search space. Here, a random fraction of the worst
solutions is abandoned and replace with newly generated solutions.

Finally, MS-Jaya also incorporates the non-dominated approach to address multi-
objective problem. For any two solutions, 	
 X#

(%&') is said to dominate X#
(%) if these

conditions hold:
• 	
 X#

(%&') is not worse than X#
(%) in all objectives

• 	
 X#
(%&') is strictly better than X#

(%) in at least one objective
Unlike single objective problem where the decision can be straightforwardly made

(i.e. on either maximizing or minimizing from a sole objective), deciding on multi-
objective best solution from the set of solutions is difficult. Utilizing the non-dominated
approach, there can be potentially more than one conflicting solutions forming the
Pareto front set. Based on the Pareto front set, the preferred Pareto optimal solution
can be decided. In the case of MS-Jaya, we adopt the same approach in Pareto-
Archived Evolution Strategy (PAES)[36] to generate the Pareto front set. MS-Jaya
replaces the current solution with the new solution if the former is dominated by the
latter or add the new solution to the Pareto front set (termed as PF archive) if it is
dominated by no solution contained in the archive. Here, the purpose of the PF archive
is to keep a historical record of the non-dominated solution found along the search
process. At the start, the PF archive is empty and current (non-dominated) candidate
solution is added to it. Then, the current (non-dominated) candidate solution found will
be compared to the solution stored in the PF archive one-by-one in each iteration. If a
particular candidate solution is dominated by one or more individuals in the PF archive,
then that candidate solution must be discarded (i.e. remove from PF archive). Similarly,
a particular candidate solution dominates any individual in the PF archive, that
individual must be discarded.

Summing up, Figure 3 outlines the pseudo code for the multi-objective MS-Jaya
algorithm.

Input: the population X = {X1, X2… Xn}
Output: the updated population X ´= {X1´, X2´… Xn´} and the Pareto Front archive,

PF = {Xp1, Xp2,… Xpn}
[1]. Begin
[2]. Initialize random populations , X
[3]. Set initial X*+,% = X? and initial X@001 = X*+,%
[4]. Set population size, n
[5]. While (stopping criteria not met (i.e. t < T))
[6]. Set threshold ∆	
 = random between [0,1] ×	
 n
[7]. For population count, i =1 to n
[8]. If (non_improvement_count == ∆) then
[9]. t =1
[10]. non_improvement_count =0
[11]. EndIf
[12]. Generate random values of r' and r. between [0,1]
[13]. Calculate α using Eq. 5
[14]. Update the current population using Eq. 4
[15]. If (X#

(%&')) dominates (
 X#
(%)) then

[16]. X#
(%) = 	
 X#

(%&')
[17]. If (X#

(%&')) dominates	
 (X*+,%) then
[18]. 	
 	
 X*+,% =	
 X#

(%&')
[19]. Add X*+,% into PF archive
[20]. EndIf
[21]. Else
[22]. non_improvement_count++;
[23]. If (X#

(%)) dominates (X/01,%) then
[24]. 	
 	
 	
 X/01,% =	
 X#

(%)
[25]. EndIf
[26]. EndIf
[27]. For i=1 to random[0,1]	
 ×	
 n // Cuckoo elitism scheme
[28]. Find the worst, X#

(%)
[29]. Generate randomly	
 X#

(%&')
[30]. If (X#

(%&')) dominates	
 (X#
(%)) then

[31]. X#
(%) = 	
 X#

(%&')
[32]. EndIf
[33]. EndFor
[34]. If X*+,% is dominated by any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[35]. Discard and remove 𝑋𝑋DEFG from the PF	
 archive
[36]. Else If 𝑋𝑋DEFG dominates any member of existing {Xbest_1, Xbest_2,…

Xbest_n} from the PF archive
[37]. Discard and remove 𝑋𝑋DEFG_I from the PF	
 archive
[38]. EndIf
[39]. EndFor
[40]. EndWhile
[41]. Return the updated population, X. Report the PF archive and select the

preferred solution
[42]. End

Figure 3. Pseudo Code for Multi-Objective MS-Jaya Algorithm

5. Adapting MS-Jaya for Software Module Clustering Problem
In order to adopt the MS-Jaya algorithm for software module clustering problem,

there is a need to devise suitable solution representation. In the current work, the
solution is initially represented by a set consisting of the random sequence of
modules. To illustrate, consider Figure 4 depicting a random set {1,3,6,5,4,2,7,8}
representing the 8 module MDG sequence (i.e. the sequence set can be changed
by the MS-Jaya operator during the iteration process). To obtain the suitable
number of clusters, the sequence set is to be partitioned accordingly. Here,
the minimum cluster = 2 and the maximum cluster = 8/2 = 4 can be deduced.
The rationale for the minimum cluster =2 is that there is a need for more than
one cluster (i.e. no clustering is necessary if the minimum cluster = 1). With the
maximum cluster = 4, a single module cluster can be avoided. For the sequence
set {1,3,6,5,4,2,7,8}, a randomized partition is generated from 2 to 4 clusters as
shown Figure 4a) till Figure 4b). In Figure 4a), the partition generates 2 clusters
consisting of {{1,3,6,5},{4,2,7,8}}. In similar manner, in Figure 4b), the partition
generates 3 clusters consisting of {{1,3},{6,5,4},{2,7,8}}. Finally, in Figure 4c), the
partition generates 4 clusters consisting of {{1,3},{6,5},{4,2},{7,8}}.

There are a total of 2,794 possibilities of clustering solution (i.e. from 2 to
4 clusters) for this problem (referred to as the generation of Stirling number of
the second kind). However, generating all exhaustive partitions is practically
meaningless (i.e. as some partitions will also produce a single module cluster).
As such, the way that the partition is organized also influences the results (e.g.
not allowing single module partition). By manipulating the sequence using MS-
Jaya and adopting the preferred clustering approach (i.e. ECA or MCA), the best
clustering solution can be located accordingly.

Taking into account the need to partition the sequence representation of MDG,
Figure 5 depicts the complete MS-Jaya pseudo code for addressing the software
module clustering problem. In particular, the two round shaded boxes represent
the actual partitioning of the MDG sequence as well as the steps for Pareto front
generation.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

98

 Figure 4. MDG Sequence Representation and Partitioning

Taking into account the need to partition the sequence representation of MDG,
Figure 5 depicts the complete MS-Jaya pseudo code for addressing the software
module clustering problem. In particular, the two round shaded boxes represent
the actual partitioning of the MDG sequence as well as the steps for Pareto front
generation.
Input: the population X = {X1, X2… Xn}
Output: the updated population X ´= {X1´, X2´… Xn´} and the Pareto Front archive, PF =
{Xp1, Xp2,… Xpn}
[1]. Begin
[2]. Initialize and randomize partition of populations , X
[3]. Set initial X"#$% = X' and initial X())* = X"#$%
[4]. Set population size, n
[5]. Set max_partition = no of modules/2
[6]. While (stopping criteria not met (i.e. t < T))
[7]. Set threshold ∆	
 = random between [0,1] ×	
 n
[8]. Set 	
 	
 X"#$% randomly from any X. in the population
[9]. For population count, i =1 to n
[10]. If (non_improvement_count == ∆) then
[11]. t =1
[12]. non_improvement_count =0
[13]. EndIf
[14]. Generate random values of r0 and r1 between [0,1]
[15]. Calculate α using Eq. 5
[16]. Update the current population using Eq. 4
[17]. For partition = 2 to max_partition
[18]. Create partition X.

(%40)
[19]. If (X.

(%40)) dominates (
 X.
(%)) then

[20]. X.
(%) = 	
 X.

(%40)
[21]. If (X.

(%40)) dominates	
 (X"#$%) then
[22]. 	
 	
 X"#$% =	
 X.

(%40)
[23]. Add X"#$% into PF archive
[24]. EndIf
[25]. Else
[26]. non_improvement_count++;
[27]. If (X.

(%)) dominates (X6)*$%) then
[28]. 	
 	
 	
 	
 	
 	
 	
 X6)*$% =	
 X.

(%)
[29]. EndIf
[30]. EndIf
[31]. EndFor
[32]. For i=1 to random[0,1]	
 ×	
 n // Cuckoo elitism scheme
[33]. Find the worst, X.

(%)
[34]. Generate randomly	
 X.

(%40)
[35]. For partition = 2 to max_partition
[36]. Create partition (X.

(%40))
[37]. If (X.

(%40)) dominates	
 (X.
(%)) then

[38]. X.
(%) = 	
 X.

(%40)
[39]. EndIf
[40]. EndFor
[41]. EndFor
[42]. If X"#$% is dominated by any member of existing {Xbest_1, Xbest_2,… Xbest_n}

from the PF archive
[43]. Discard and remove X"#$% from the PF	
 archive
[44]. Else If X"#$% dominates any member of existing {Xbest_1, Xbest_2,… Xbest_n}

from the PF archive
[45]. Discard and remove X"#$%_8 from the PF	
 archive
[46]. EndIf
[47]. EndFor
[48]. EndWhile
[49]. Return the updated population, X. Report the PF archive and select the

preferred solution
[50]. End

Figure 5. Pseudo Code for Multi-Objective MS-Jaya Algorithm for Software
Clustering Problem

Kamal Z. Zamli, et al.

99

Input: the population X = {X1, X2… Xn}
Output: the updated population X ´= {X1´, X2´… Xn´} and the Pareto Front archive, PF =
{Xp1, Xp2,… Xpn}
[1]. Begin
[2]. Initialize and randomize partition of populations , X
[3]. Set initial X"#$% = X' and initial X())* = X"#$%
[4]. Set population size, n
[5]. Set max_partition = no of modules/2
[6]. While (stopping criteria not met (i.e. t < T))
[7]. Set threshold ∆	
 = random between [0,1] ×	
 n
[8]. Set 	
 	
 X"#$% randomly from any X. in the population
[9]. For population count, i =1 to n
[10]. If (non_improvement_count == ∆) then
[11]. t =1
[12]. non_improvement_count =0
[13]. EndIf
[14]. Generate random values of r0 and r1 between [0,1]
[15]. Calculate α using Eq. 5
[16]. Update the current population using Eq. 4
[17]. For partition = 2 to max_partition
[18]. Create partition X.

(%40)
[19]. If (X.

(%40)) dominates (
 X.
(%)) then

[20]. X.
(%) = 	
 X.

(%40)
[21]. If (X.

(%40)) dominates	
 (X"#$%) then
[22]. 	
 	
 X"#$% =	
 X.

(%40)
[23]. Add X"#$% into PF archive
[24]. EndIf
[25]. Else
[26]. non_improvement_count++;
[27]. If (X.

(%)) dominates (X6)*$%) then
[28]. 	
 	
 	
 	
 	
 	
 	
 X6)*$% =	
 X.

(%)
[29]. EndIf
[30]. EndIf
[31]. EndFor
[32]. For i=1 to random[0,1]	
 ×	
 n // Cuckoo elitism scheme
[33]. Find the worst, X.

(%)
[34]. Generate randomly	
 X.

(%40)
[35]. For partition = 2 to max_partition
[36]. Create partition (X.

(%40))
[37]. If (X.

(%40)) dominates	
 (X.
(%)) then

[38]. X.
(%) = 	
 X.

(%40)
[39]. EndIf
[40]. EndFor
[41]. EndFor
[42]. If X"#$% is dominated by any member of existing {Xbest_1, Xbest_2,… Xbest_n}

from the PF archive
[43]. Discard and remove X"#$% from the PF	
 archive
[44]. Else If X"#$% dominates any member of existing {Xbest_1, Xbest_2,… Xbest_n}

from the PF archive
[45]. Discard and remove X"#$%_8 from the PF	
 archive
[46]. EndIf
[47]. EndFor
[48]. EndWhile
[49]. Return the updated population, X. Report the PF archive and select the

preferred solution
[50]. End

Figure 5. Pseudo Code for Multi-Objective MS-Jaya Algorithm for Software
Clustering Problem

6. Benchmarking Experiments
Our experiments focus on two related goals: (1) to benchmark MS-Jaya against the

original Jaya algorithm and other state-of-the-art parameter free meta-heuristic algorithms;
(2) to assess the performance of MS-Jaya in terms of modularisation quality, cohesion and
coupling for both unweighted and weighted MDGs.

We divide our experiments into two parts. In the first part, we compare MS-Jaya
against existing parameter free algorithm (i.e. consisting of the original Jaya [6], Teaching

Azerbaijan Journal of High Performance Computing, 1(1), 2018

100

Learning based Optimization (TLBO)[7], Global Neighborhood Algorithm (GNA) [12],
Symbiotic Optimization Search (SOS) [8], and Sine Cosine Algorithm (SCA)[9])) based on
the benchmark case studies of unweighted MDGs (available in GitHub [37]) that has been
adopted in Mitchell and Maconridis [13], Praditwong et al [14], and Kumari and Srinivas [28]
respectively. The descriptions of all the case studies are given in Table 1. We consider both
the MCA and the ECA approach for each case study. As the specifications of the weighted
MDGs for the abovementioned six MDGs are no longer available (despite contacting the
authors), the weighted MDGs as part of Praditwong et al were not experimented.

In the second part, we also compare against parameter free algorithm (i.e. consisting
of the original Jaya [6], Teaching Learning based Optimization (TLBO)[7], Global
Neighborhood Algorithm (GNA) [12], Symbiotic Optimization Search (SOS) [8], and
Sine Cosine Algorithm (SCA)[9])). Unlike the first part, we compare both weighted and
unweighted MDGs side-by-side using MCA and ECA approach. Our case studies consist
of three MDGs as defined in Hall et al [38]. The descriptions of the three MDGs are given
in Table 2 (and depicted in Figures 6 till 8). Unlike the earlier case studies in Table 1, the
case studies in Table 2 involve state machine representation whereby clustering of MDGs
represent the identification of super states.

Our experimental platform comprises of a PC running Windows 10, CPU 2.9 GHz Intel
Core i5, 16 GB 1867 MHz DDR3 RAM and a 512 MB of flash HDD. As all the algorithms are
parameter free, we do not need to do any control parameter settings with the exception of
the population size and iteration. According to the observation from Kumari and Srinivas
[28], given the number of modules (N), the population size must be set at least with 10xN
and the number of generation at 200xN to cope with the increased in the complexity in
clustering more number of modules. To ensure fair comparison, we also set the same
maximum fitness function evaluation for all the case studies. Additionally, we develop all
the algorithms adopted in the experiments using the Java programming language based
on the same approach to cater for Pareto front generation. Table 3 highlights the settings
for all algorithms for each case study highlighted in both part 1 and 2. Meanwhile, the
results of all the experiments are tabulated in Tables 4 till 11. Shaded cells indicate the
best performance for a set of best solution for each of the case studies (e.g. maximizing
MQ, minimizing inter-edges, and maximizing intra-edges) selected from the Pareto lists.

TABLE 1. MDGs for Part 1
System
Name Modules Links Description

Mtunis 20 57 An operating system for educational purpose writ-
ten in the Turing language

Ispell 24 103 Software for spelling and typographical error cor-
rection in files

Rcs 29 163 Revision control system used to manage multiple
revisions of files

Bison 37 179 General purpose parser generator for converting
grammar description into C program

Kamal Z. Zamli, et al.

101

TABLE 2. MDG for Part 2
State Machines Modules Links Description

Water Pump
Controller [39]

10 14 A state machine representation for the water
pump controller with unweighted and as-
signed weight (i.e. refer to Figure 6)

Alarm Clock of
Romera [40]

9 25 A state machine representation for an alarm
clock based on a MSc thesis with unweighted
and assigned weight (i.e. refer to Figure 7)

Tamagotchi
[38]

14 38 A state machine representation of a Tama-
gotchi pet toy as part of the student project
with unweighted and assigned weight (i.e.
refer to Figure 8)

TABLE 3. Maximum Fitness Function Evaluation
System Name Maximum Fitness

Function Evaluation
as suggested by

[14]

MDG for Part I

Mtunis 800000
Ispell 115200
Rcs 1682000

Bison 2738000

MDG for Part 2

Water Pump Control-
ler

200000

Alarm Clock of
Romera

162000

Tamagotchi 392000

6(a) Unweighted State Machine 6(b) Weighted State Machine
Figure 6. State Machines for Water Pump Controller

Azerbaijan Journal of High Performance Computing, 1(1), 2018

102

7(a) Unweighted State Machine

7(b) Weighted State Machine
Figure 7. State Machines for Alarm Clock of Romera

Kamal Z. Zamli, et al.

103

8(a) Unweighted State Machine

8(a) Weighted State Machine
Figure 8. State Machines for Tamagotchi

Azerbaijan Journal of High Performance Computing, 1(1), 2018

104

TA
BL

E
4.

 M
ax

im
iz

in
g

of
 M

Q
 v

al
ue

s
w

ith
 M

C
A

Ap
pr

oa
ch

Te
ac

hi
ng

 L
ea

rn
in

g
ba

se
d

O
pt

im
iz

a-
tio

n
[7

]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
-

rit
hm

 [1
2]

Sy
m

bi
ot

ic

O
pt

im
iz

at
io

n
Se

ar
ch

 [8
]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya

Al
go

rit
hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

tu
ni

s
2.

16
1

0.
05

1
2.

17
9

0.
04

2
2.

13
1

0.
06

4
2.

17
9

0.
04

9
2.

23
85

0.
03

4
2.

23
9

0.
03

7
Is

pe
ll

2.
19

4
0.

04
1

2.
23

7
0.

03
7

2.
15

8
0.

06
2.

19
9

0.
05

5
2.

27
7

0.
03

5
2.

28
7

0.
03

2
Bi

so
n

1.
97

6
0.

07
5

2.
01

6
0.

11
5

1.
91

3
0.

12
6

1.
99

2
0.

09
7

2.
19

1
0.

06
5

2.
20

7
0.

06
7

Rc
s

2.
01

7
0.

05
3

2.
03

6
0.

06
1

1.
98

3
0.

06
9

2.
03

2
0.

05
1

2.
11

3
0.

03
6

2.
11

5
0.

04
5

TA
BL

E
5.

 M
in

im
iz

in
g

in
te

r-e
dg

es
 v

al
ue

s
w

ith
 M

C
A

Ap
pr

oa
ch

Te
ac

hi
ng

 L
ea

rn
-

in
g

ba
se

d
O

pt
i-

m
iz

at
io

n
[7

]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
-

rit
hm

 [1
2]

Sy
m

bi
ot

ic

O
pt

im
iz

at
io

n
Se

ar
ch

 [8
]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya
 A

lg
o-

rit
hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

tu
ni

s
69

.0
11

7.
25

3
69

.1
10

5.
84

8
72

.0
11

6.
81

2
67

.0
11

5.
27

3
67

.0
21

4.
49

4
64

.0
11

5.
06

1
Is

pe
ll

15
0.

02
1

14
.5

50
15

5.
02

2
9.

78
8

14
7.

03
4

22
.0

86
15

1.
02

2
13

.6
6

15
5.

01
1

7.
47

15
1.

05
6

8.
63

7
Bi

so
n

29
4.

02
1

29
.2

64
28

5.
00

0
23

.8
62

28
9.

03
3

33
.2

78
27

1.
05

4
42

.6
45

27
7.

01
1

33
.6

54
26

9.
04

4
35

.0
05

Rc
s

19
0.

03
5

46
.9

46
22

1.
01

2
36

.8
85

19
9.

02
0

46
.2

72
17

7.
01

1
33

.4
65

22
3.

02
3

39
.1

64
21

8.
03

4
38

.5
56

Kamal Z. Zamli, et al.

105

Ta
bl

e
6.

 M
ax

im
iz

in
g

in
tra

-e
dg

es
 v

al
ue

s
w

ith
 M

C
A

Ap
pr

oa
ch

Te

ac
hi

ng

Le
ar

ni
ng

 b
as

ed

O
pt

im
iz

at
io

n
[7

]

G
lo

ba
l N

ei
gh

bo
r-

ho
od

 A
lg

or
ith

m

[1
2]

Sy
m

bi
ot

ic
 O

pt
i-

m
iz

at
io

n
Se

ar
ch

[8

]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya
 A

lg
o-

rit
hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

tu
ni

s
22

.0
12

3.
60

6
22

.0
11

2.
95

8
21

.1
11

3.
40

6
23

.0
11

2.
65

5
23

.0
11

2.
28

0
25

.0
11

2.
53

0
Is

pe
ll

27
.0

11
7.

28
7

25
.0

12
4.

91
4

29
.0

12
11

.0
45

27
.0

11
6.

82
3

25
.0

23
3.

73
5

27
.0

12
4.

30
7

Bi
so

n
32

.0
23

29
.2

64
36

.1
23

11
.9

25
34

.5
60

16
.6

46
44

.5
60

21
.3

26
40

.5
60

16
.8

21
43

.0
23

17
.8

03
Rc

s
67

.0
45

25
.4

75
52

.0
43

23
.4

47
63

.0
23

38
.1

35
74

.0
24

31
.7

33
51

.0
12

19
.5

86
53

.0
02

19
.2

81

TA
BL

E
7.

 M
ax

im
iz

in
g

M
Q

 v
al

ue
s

w
ith

 E
C

A
Ap

pr
oa

ch
Te

ac
hi

ng

Le
ar

ni
ng

 b
as

ed

O
pt

im
iz

at
io

n
[7

]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
-

rit
hm

 [1
2]

Sy
m

bi
ot

ic
 O

pt
i-

m
iz

at
io

n
Se

ar
ch

[8

]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya
 A

lg
o-

rit
hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

tu
ni

s
2.

15
9

0.
04

9
2.

18
8

0.
05

2
2.

12
9

0.
06

5
2.

16
8

0.
05

2.
22

9
0,

02
9

2.
24

6
0.

03
4

Is
pe

ll
2.

17
5

0.
06

2.
22

4
0.

05
4

2.
12

6
0.

06
9

2.
19

9
0.

05
1

2.
27

2
0.

04
5

2.
28

8
0.

03
5

Bi
so

n
1.

99
5

0.
08

2.
06

3
0.

11
7

1.
91

8
0.

11
2.

00
4

0.
08

1
2.

18
3

0.
07

2
2.

20
5

0.
07

4
Rc

s
2.

03
2

0.
05

2.
05

1
0.

03
5

1.
99

3
0.

07
3

2.
04

6
0.

07
1

2.
10

9
0.

03
6

2.
10

2
0.

03
4

Azerbaijan Journal of High Performance Computing, 1(1), 2018

106

TA
BL

E
8.

 M
in

im
iz

in
g

in
te

r-e
dg

es
 v

al
ue

s
w

ith
 E

C
A

Ap
pr

oa
ch

Te
ac

hi
ng

Le

ar
ni

ng
 b

as
ed

O

pt
im

iz
at

io
n

[7
]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
-

rit
hm

 [1
2]

Sy
m

bi
ot

ic
 O

pt
i-

m
iz

at
io

n
Se

ar
ch

[8

]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]

M
S-

Ja
ya

 A
lg

o-
rit

hm

C
as

e
St

ud
-

ie
s

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

M
ea

n
St

d.

D
ev

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
.

M
tu

ni
s

68
.0

11
6.

54
2

68
.0

11
6.

06
6

72
.0

11
6.

13
2

70
.0

11
5.

72
7

67
.0

11
4.

17
1

66
.0

12
6.

34
1

Is
pe

ll
15

0.
12

3
13

.3
27

15
7.

22
1

5.
42

2
14

1.
02

0
17

.1
76

14
7.

11
2

19
.5

19
15

8.
11

1
3.

49
3

14
9.

11
1

9.
34

9
Bi

so
n

28
7.

11
2

35
.7

18
27

5.
01

1
22

.4
24

28
5.

01
1

29
.2

06
27

6.
01

2
45

.8
43

27
5.

02
3

29
.5

13
29

0.
21

3
15

.7
54

Rc
s

19
8.

01
1

28
.9

96
21

9.
08

9
21

.1
07

18
7.

11
2

28
.2

05
22

1.
33

3
24

.4
33

21
9.

65
0

32
.2

13
21

0.
21

3
27

.5
82

TA
BL

E
9.

 M
ax

im
iz

in
g

in
tra

-e
dg

es
 v

al
ue

s
w

ith
 E

C
A

Ap
pr

oa
ch

Te

ac
hi

ng

Le
ar

ni
ng

 b
as

ed

O
pt

im
iz

at
io

n
[7

]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
-

rit
hm

 [1
2]

Sy
m

bi
ot

ic
 O

pt
i-

m
iz

at
io

n
Se

ar
ch

[8

]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]

M
S-

Ja
ya

 A
lg

o-
rit

hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

tu
ni

s
22

.0
23

3.
36

2
22

.0
22

3.
16

2
20

.0
12

3.
13

1
21

.0
11

3.
00

1
23

.0
11

2.
08

8
23

.0
13

2.
07

4
Is

pe
ll

28
.1

23
6.

66
3

24
.1

12
2.

71
1

32
.1

11
8.

58
8

29
.1

11
9.

76
7

23
.1

10
1.

93
6

28
.0

04
4.

70
1

Bi
so

n
35

.1
11

17
.8

62
41

.1
12

21
.2

16
36

.0
51

14
.6

05
40

.0
99

22
.9

39
41

.1
11

14
.7

61
33

.1
13

7.
89

6
Rc

s
63

.2
32

26
.5

11
53

.2
10

20
.5

51
69

.0
11

29
.1

04
52

.1
23

27
.2

21
53

.2
13

26
.1

05
57

.1
23

23
.7

95

Kamal Z. Zamli, et al.

107

TA
BL

E
10

. C
om

pa
ris

on
 o

f b
es

t M
Q

 v
al

ue
s

fo
r U

nw
ei

gh
te

d
an

d
W

ei
gh

te
d

St
at

e
M

ac
hi

ne
 S

up
er

st
at

e
Id

en
tifi

ca
tio

n
w

ith
 M

C
A

Ap
pr

oa
ch

Te
ac

hi
ng

Le

ar
ni

ng

ba
se

d
O

pt
i-

m
iz

at
io

n
[7

]

G
lo

ba
l N

ei
gh

-
bo

rh
oo

d
Al

go
rit

hm
 [1

2]

Sy
m

bi
ot

ic

O
pt

im
iz

at
io

n
Se

ar
ch

 [8
]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya

Al
go

rit
hm

C
as

e
St

ud
ie

s
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
.

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

U
nw

ei
gh

t-
ed

W
at

er

Pu
m

p
C

on
tro

lle
r

2.
30

5
0.

00
0

2.
30

5
0.

00
0

2.
30

5
0.

00
0

2.
30

5
0.

00
0

2.
30

5
0.

00
0

2.
30

5
0.

00
0

Al
ar

m

C
lo

ck
 o

f
Ro

m
er

a
1.

37
7

0.
00

2
1.

37
7

0.
00

2
1.

37
7

0.
00

2
1.

39
4

0.
05

0
1.

39
4

0.
05

0
1.

40
2

0.
05

5

Ta
m

ag
ot

-
ch

i
2.

58
4

0.
00

9
2.

58
2

0.
01

6
2.

58
1

0.
01

6
2.

55
7

0.
03

4
2.

58
5

0.
01

7
2.

58
7

0.
01

6

W
ei

gh
te

d

W
at

er

Pu
m

p
C

on
tro

lle
r

2.
51

4
0.

00
0

2.
51

4
0.

00
0

2.
51

4
0.

00
0

2.
51

4
0.

00
0

2.
51

4
0.

00
0

2.
51

4
0.

00
0

Al
ar

m

C
lo

ck
 o

f
Ro

m
er

a
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0

Ta
m

ag
ot

-
ch

i
3.

19
3

0.
01

3.
19

5
0.

01
3

3.
19

3
0.

01
3

3.
18

2
0.

01
3

3.
19

4
0.

00
3

3.
19

8
0.

01
3

Azerbaijan Journal of High Performance Computing, 1(1), 2018

108

TA
BL

E
11

. C
om

pa
ris

on
 o

f b
es

t M
Q

 v
al

ue
s

fo
r U

nw
ei

gh
te

d
an

d
W

ei
gh

te
d

St
at

e
M

ac
hi

ne
 S

up
er

st
at

e
Id

en
tifi

ca
tio

n
w

ith
 E

C
A

Ap
pr

oa
ch

Te
ac

hi
ng

Le

ar
ni

ng

ba
se

d
O

pt
im

i-
za

tio
n

[7
]

G
lo

ba
l

N
ei

gh
bo

r-
ho

od
 A

lg
o-

rit
hm

 [1
2]

Sy
m

bi
ot

ic

O
pt

im
iz

at
io

n
Se

ar
ch

 [8
]

Si
ne

 C
os

in
e

Al
go

rit
hm

 [9
]

O
rig

in
al

 J
ay

a
Al

go
rit

hm
 [6

]
M

S-
Ja

ya

Al
go

rit
hm

C
as

e
St

ud
-

ie
s

M
ea

n
St

d.

D
ev

M
ea

n
St

d.

D
ev

.
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
M

ea
n

St
d.

D

ev
.

U
nw

ei
gh

t-
ed

W
at

er

Pu
m

p
C

on
-

tro
lle

r
2.

30
5

0.
00

2
2.

30
5

0.
00

2
2.

30
5

0.
00

2
2.

30
5

0.
00

2
2.

30
5

0.
00

2
2.

30
5

0.
00

2

Al
ar

m

C
lo

ck
 o

f
Ro

m
er

a
1.

37
7

0.
0

1.
37

7
0.

0
1.

37
7

0.
0

1.
40

2
0.

05
9

1.
38

5
0.

03
6

1.
41

0
0.

06
6

Ta
m

ag
ot

-
ch

i
2.

58
6

0.
00

5
2.

58
6

0.
02

1
2.

56
9

0.
03

1
2.

56
3

0.
02

9
2.

58
6

0.
00

5
2.

58
8

0.
00

1

W
ei

gh
te

d

W
at

er

Pu
m

p
C

on
-

tro
lle

r
2.

51
4

0.
00

0
2.

51
4

0.
00

0
2.

51
4

0.
00

0
2.

51
4

0.
00

0
2.

51
4

0.
00

0
2.

51
4

0.
00

0

Al
ar

m

C
lo

ck
 o

f
Ro

m
er

a
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0
2.

12
3

0.
00

0

Ta
m

ag
ot

-
ch

i
3.

19
4

0.
01

5
3.

19
3

0.
01

4
3.

19
1

0.
01

3
3.

18
9

0.
01

7
3.

19
2

0.
00

3
3.

19
8

0.
00

6

Kamal Z. Zamli, et al.

109

7. Experimental Observation
Based on the experiments undertaken, a number of observations can be elaborated

based on the obtained results.
Considering the MCA approach, MS-Jaya outperforms all algorithms for all case

studies as far as the mean of maximizing MQ in concerned in Table 4 (with small standard
deviations swing). In the case minimizing inter-edges in Table 5, MS-Jaya also outperforms
other algorithms in two case studies involving Mtunis and Bison. Here, SoS gives the best
mean for Ispell and TLBO for Rcs, respectively. The standard deviations for all cases are
large indicating large swing of values. Considering maximizing intra-edges in Table 6, SCA
outperforms all other algorithms with the best mean for Bison and Rcs. SoS and MS-Jaya
obtain the best mean for Ispell and Mtunis, respectively. Similar to Table 5, the standard
deviations for all cases are also large. Often, large standard deviations are caused by the
potentially many possible combinations of clusters that yield similar results.

Referring to Table 7 for ECA approach, MS-Jaya gives the best mean for three-out-of-
four cases (involving Mtunis, Ispell and Bison) as far as maximizing the MQ is concerned.
MS-Jaya, SoS, GNA, and TLBO share the best mean for each case study in Table 8.
Similar observation can be deduced in Table 9 as far maximizing intra-edges. It is worth
mentioning that the standard deviations are similar to that of the MCA approach given
earlier (i.e. in Tables 4 till 6).

Concerning the unweighted and weighted state machine clustering with MCA approach
in Table 10, MS-Jaya outperforms all other algorithm as far as the best mean of MQ. For
the weighted Water Pump Controller and Alarm Clock of Romera, all algorithm get the
best result with no standard deviation indicating that all exhaustive possibilities have been
exercised by the specified iteration.

Finally, as far as the unweighted and weighted state machine clustering with ECA
approach in Table 11, similar observation can be deduced. MS-Jaya outperforms all
other algorithm in terms of the best mean of MQ. For the weighted Water Pump Controller
and Alarm Clock of Romera, all algorithm get the best result with no standard deviation.
Concerning Tamagotchi case study, the same mean MQ is achieved for ECA and MCA
approaches.

8. Concluding Remarks
Reflecting on the earlier given results from the comparative experiments, the usefulness

of our approach can be debated further. Firstly, the fact that MS-Jaya has consistently
outperformed the original Jaya gives clear indication that the exploration and exploitation
have been improved. Although MS-Jaya has not singly outperformed other algorithms in
the case of minimizing inter-edges and maximizing intra-edges, the obtained mean results
have been competitive. In fact, MS-Jaya gives the overall best as far as obtaining the best
MQ values for both MCA and ECA in almost all cases (except in the case of Rcs in Table 7).

Secondly, our modification of the original algorithm (including that of restarting
mechanism, Cuckoo search like elitism, and multi-objective capabilities) has not in any
way degraded Jaya. Specifically, we have maintained MS-Jaya as parameter free meta-
heuristic algorithm. The fact that MS-Jaya is also parameter free retains the attractiveness
of Jaya in terms of not requiring significant tuning for adoption in any optimization problems.

Thirdly, given that all the meta-heuristic algorithms are relying on random operators to

Azerbaijan Journal of High Performance Computing, 1(1), 2018

110

generate new solution, fairness of the benchmark experiments and their comparisons can
be an issue. Additionally, the restarting mechanism within MS-Jaya (i.e. as a way to avoid
getting trap in local minima) may also potentially increase iteration. In our case, we define
the same maximum fitness function evaluation for all algorithms. In this manner, all the
algorithms will terminate with same the maximum fitness function evaluation. As such, the
comparisons are fair for all algorithms.

Finally, as the scope for future work, we are looking to investigate the application of MS-
Jaya for other optimization problems. In particular, we are interested to contribute in the
Search based Software Engineering (SBSE) field whereby meta-heuristic algorithms are
being sought to solve complex software engineering optimization problems.

Acknowledgement
The work reported in this paper is funded by Fundamental Research Grant from Ministry

of Higher Education Malaysia titled: A Reinforcement Learning Sine Cosine based Strategy
for Combinatorial Test Suite Generation (grant no: RDU170103).

References
[1]. Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University of

Michigan Press.
[2]. Kennedy, J., Eberhart, R. (1995) Particle Swarm Optimization, Proceedings of the

IEEE International Conference Neural Networks, pp. 1942-1948. Perth, Australia.
[3]. Geem, Z. W. (2009) Music-Inspired Harmony Search Algorithm: Theory and

Applications, Studies in Computational Intelligence, Springer.
[4]. Dorigo, M., Maniezzo, V., Colorni, A. (1996) Ant System: Optimization by a Colony

of Cooperating Agents, IEEE Transactions on Computes Systems, Man, and Cybernetics,
Part B: Cybernetics, 26, 29-41.

[5]. Yang, X.S., Deb, S. (2009) Cuckoo Search via Levy Flight, Proceedings of World
Congress on Nature and Biologically Inspired Computing, pp. 210-214.

[6]. Rao, R. V. (2016) Jaya: A Simple and New Optimization Algorithm for Solving
Constrained and Unconstrained Optimization Problems, International Journal of Industrial
Engineering Computations, 7, 19-24.

[7]. Rao, R. V., Savsani, V. J., Vakharia, D. P. (2012) Teaching-Learning-Based
Optimization: An Optimization Method for Continous Non-linear Large Scale Problem,
Information Sciences, 183, 1-15.

[8]. Cheng, M.Y., Prayogo, D. (2014) Symbiotic Organisms Search: A New Meta-
Heuristic Optimization Algorithm, Computers and Structures, 139, 98-102.

[9]. Mirjalili, S. (2016) SCA: A Sine Cosine Algorithm for Solving Optimization Problems,
Knowledge Based Systems, 96, 120-133.

[10]. Bashiri, M., Amiri, A., Doroudyan, M. H., Asgari, A. (2013) Multi-Objective Genetic
Algorithm for Economic Statistical Design of X Control Chart, Scientia Iranica Transactions
E: Industrial Engineering, 20, 909-918.

[11]. Flemming, P. J. (1985) Computer Aided Control Systems Using a Multi-Objective
Optimization Approach, Proceedings of the IEEE Control'85 Conference, pp. 174-179.

[12]. Alazzam, A., Lewis, H. W. (2013) A New Optimization Algorithm For Combinatorial
Problems, International Journal of Advanced Research in Artificial Intelligence, 2, 63-68.

Kamal Z. Zamli, et al.

111

[13]. Mitchell, B. S., Mancoridis, S. (2006) On the Automatic Modularization of Software
Systems using the Bunch Tool, IEEE Transactions on Software Engineering, 32, 193-208.

[14]. Praditwong, K., Harman, M., Yao, X. (2011) Software Module Clustering as a Multi-
Objective Search Problem, IEEE Transactions on Software Engineering, 37, 264-282.

[15]. Burd, E., Munro, M. (1998) Investigating Component-based Maintenance and
the Effect of Software Evolution: A Reengineering Approach using Data Clustering,
Proceedings of the International Conference on Software Maintenance, pp. 199-207.

[16]. Lucca, G. A. D., Fasolino, A. R., Pace, F., Tramontana, P., Carlini, U. D. (2002)
Comprehending Web Applications by a Clustering-based Approach, Proceedings 10th
International Workshop on Program Comprehension, pp. 261-270.

[17]. Jahnke, J. H. (2004) Reverse Engineering Software Architecture using Rough
Clusters, Proceedings of the IEEE Annual Meeting of the Fuzzy Information Processing,
pp. 4-9

[18]. Zamli, K. Z., Alkazemi, B. Y., Kendall, G. (2016) A Tabu Search Hyper-Heuristic
Strategy for t-way Test Suite Generation, Applied Soft Computing Journal, 44, 57-74.

[19]. Zamli, K. Z., Din, F., Ahmed, B.S., Bures, M. (2018) A Hybrid Q-learning Sine-
cosine-based Strategy for Addressing the Combinatorial Test Suite Minimization Problem,
PLoS ONE, 13.

[20]. Nasser, A. B., Zamli, K.Z., Alsewari, A.R.A., Ahmed, B.S. (2018) Hybrid Flower
Pollination Algorithm Strategies for t-way Test Suite Generation, PLoS ONE, 13.

[21]. Ahmed, B. S., Zamli, K. Z., Afzal, W., Bures, M. (2017) Constrained Interaction
Testing: A Systematic Literature Review, IEEE Access, 5, 25706 - 25730.

[22]. Taylor, R. N., Medvidovic, N., Dashofy, E. M. (Ed.) (2009) Software Architecture:
Foundations, Theory, and Practice, New-York: John Wile and Sons.

[23]. Sommerville, I. (Ed.) (2001) Software Engineering, Boston: Addison-Wesley.
[24]. Gordon, A. D. (Ed.) (1999) Classification, Boca Raton: Chapman and Hall/CRC.
[25]. Mahdavi, K., Harman, M., Hierons, R. M. (2003) A Multiple Hill Climbing Approach

to Software Module Clustering, Proceedings of the International Conference on Software
Maintenance, pp. 315-324.

[26]. Praditwong, K. (2011) Solving Software Module Clustering Problem by Evolutionary
Algorithms, Proceedings of the 8th International Joint Conference on Computer Science
and Software Engineering, pp. 154-159.

[27]. Doval, D., Mancoridis, S., Mitchell, B. S. (1999) Automatic Clustering of Software
Systems using a Genetic Algorithm, Proceedings of the Software Technology and
Engineering Practice, pp. 73-81.

[28]. Kumari, A. C., Srinivas, K. (2016) Hyper-heuristic Approach for Multi-Objective
Software Module Clustering, Journal of Systems and Software, 117, pp. 384-401.

[29]. Huang, J., Liu, J., Yao, X. (2017) A Multi-Agent Evolutionary Algorithm for Software
Module Clustering Problems, Soft Computing, 21, 3415-3428.

[30]. Zamli, K. Z., Din, F., Baharom, S., Ahmed, B. S. (2017) Fuzzy Adaptive Teaching
Learning-based Optimization Strategy for the Problem of Generating Mixed Strength t-way
Test Suite, Engineering Applications of Artificial Intelligence, 59, 35-50.

[31]. Rao, R. V., Rai, D. P., Balic, J. (2017) A Multi-Objective Algorithmfor Optimization
of Modern Machining Processes, Engineering Applications of Artificial Intelligence, 61,
103-125.

Azerbaijan Journal of High Performance Computing, 1(1), 2018

112

[32]. Zamli, K. Z., Din, F., Kendall, G., Ahmed, B. S. (2017) An Experimental Study of
Hyper-Heuristic Selection and Acceptance Mechanism for Combinatorial t-way Test Suite
Generation, Information Sciences, 399, 121-153.

[33]. Rao, R. V., More, K. C. (2017) Design Optimization and Analysis of Selected Thermal
Devices using Self-Adaptive Jaya Algorithm, Energy Conversion and Management, 140,
24-35.

[34]. Rao, R. V., Saroj, A. A Self-Adaptive Multi-Population based Jaya Algorithm for
Engineering Optimization, Swarm and Evolutionary Computation, 37, 1-26.

[35]. Salwani, A., Laleh, G., Mohd Zakree, A. N. (2011) Re-Heat Simulated Annealing
Algorithm for Rough Set Attribute Reduction, International Journal of the Physical Sciences,
6, 2083-2089.

[36]. Knowles, J. D., Corne, D. W. (1999) The Pareto Archived Evolution Strategy: A New
Baseline Algorithm for Pareto Multi-Objective Optimization, Proceedings of the Congress
on Evolutionary Computation (CEC ’99), pp.98-105.

[37]. Barros, M. (June 2017) MDGs Benchmark. Retrieved from https://github.com/
cmsp/ils.

[38]. Hall, M., McMinn, P., Walkinshaw, N. (2010) Superstate Identification for State
Machines using Search-Based Clustering, Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation, pp. 1381-1388.

[39]. Damas, C., Lambeau, B., Dupont, P., Lamsweerde, A. V. (2005) Generating
Annotated Behavior Models from End-User Scenarios, IEEE Transactions on Software
Engineering, 31, 1056-1073.

[40]. Romera, M. E. (2000) Using Finite Automata to represent Mental Models, MSc
Thesis, Department of Psychology, San Jose State University.

Submitted 20.02.2018
Accepted 27.05.2018

Kamal Z. Zamli, et al.

