Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMammadli, Anar-
dc.date.accessioned2024-03-22T18:40:45Z-
dc.date.available2024-03-22T18:40:45Z-
dc.date.issued2023-12-01-
dc.identifier.issn2616-6127 2617-4383-
dc.identifier.urihttp://dspace.azjhpc.org/xmlui/handle/123456789/267-
dc.description.abstractThis study explores the integration of Word2Vec embeddings and machine learning models to analyze and enhance serious game data. Word2Vec captures semantic relationships in textual content, while the Naive Bayes classifier extracts meaningful patterns. The approach improves understanding of linguistic nuances, contributing to the effectiveness of serious3 games in achieving educational objectives. Experimental results demonstrate the model's efficacy in uncovering hidden insights within the game data. This research provides a robust framework for optimizing serious game content and enhancing its educational impact.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectSerious Gameen_US
dc.subjectEmbeddingsen_US
dc.subjectNLPen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectText Categorizationen_US
dc.titleUnlocking Educational Insights: Integrating Word2Vec Embeddings and Naive Bayes Classifier for Serious Game Data Analysis and Enhancementen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume6en_US
dc.source.issue1en_US
dc.source.beginpage191en_US
dc.source.endpage198en_US
dc.source.numberofpages8en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2023.6.2.191.198.pdf674.77 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.