Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/34
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRajput, Snehal R.-
dc.contributor.authorRaval, Mehul S.-
dc.date.accessioned2023-04-28T19:44:32Z-
dc.date.available2023-04-28T19:44:32Z-
dc.date.issued2020-06-
dc.identifier.issn2616-6127-
dc.identifier.issn2617-4383-
dc.identifier.otherhttps://doi.org/10.32010/26166127.2020.3.1.119.138-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/34-
dc.description.abstractBrain tumor segmentation intends to delineate tumor tissues from healthy brain tissues. The tumor tissues include necrosis, peritumoral edema, and active tumor. In contrast, healthy brain tissues include white matter, gray matter, and cerebrospinal fluid. The MRI based brain tumor segmentation research is gaining popularity as; 1. It does not irradiate ionized radiation like X-ray or computed tomography imaging. 2. It produces detailed pictures of internal body structures. The MRI scans are input to deep learning-based approaches that are useful for automatic brain tumor segmentation. The features from segments are fed to the classifier, which predicts the overall survival of the patient. This paper aims to give an extensive overview of the state-of-the-art, jointly covering brain tumor segmentation and overall survival prediction.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectBrainen_US
dc.subjectimage analysisen_US
dc.subjectneural networken_US
dc.subjectsegmentationen_US
dc.subjecttumoren_US
dc.titleA REVIEW ON END-TO-END METHODS FOR BRAIN TUMOR SEGMENTATION AND OVERALL SURVIVAL PREDICTIONen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume3en_US
dc.source.issue1en_US
dc.source.beginpage119en_US
dc.source.endpage138en_US
dc.source.numberofpages20en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2020.3.1.119.138.pdf573.65 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.