Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbbasov, V. M.-
dc.contributor.authorAzizov, R. E.-
dc.contributor.authorAghamaliyev, Z. Z.-
dc.contributor.authorAydinsoy, E. A.-
dc.contributor.authorAlimadatli, N. Y.-
dc.date.accessioned2024-04-13T16:27:12Z-
dc.date.available2024-04-13T16:27:12Z-
dc.date.issued2024-04-25-
dc.identifier.issn1609-1620-
dc.identifier.urihttp://dspace.azjhpc.org/xmlui/handle/123456789/413-
dc.description.abstractComputer Vision, Deep Learning, and Machine Learning Algorithms make it possible to detect various dynamic issues in nature. Tankers, oil fields, oil pipelines, and hydrocarbon leaks and spills create serious problems for the sea ecosystems. [1] Utilizing this type of model can help detect oil leaks promptly, guide scientists’ predictions, compile cleaning plans, make urgent decisions on time, and stop or reduce the negative impacts of those incidents. Numerous recent scientific studies have been taken on this issue [2-7]. Illegal Pollution requires continuous monitoring and remote tracking technique employing satellites is an intriguing solution for the detection of oil leaks [8]. In this article, the solution to this problem is provided with the help of a recently updated model [9]. Specifically, emphasize the automatic approach of differentiation of oil marks and other similar marks.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan State Oil and Industry Universityen_US
dc.subjectOilen_US
dc.subjectImage Localization Modelsen_US
dc.subjectPyTorchen_US
dc.subjectYOLOv8en_US
dc.subjectArtificial Intelligenceen_US
dc.subjectOil Leaken_US
dc.titleTHE LOCALIZATION OF OIL LEAKS IN THE SEA USING SATELLITE AND DRONE IMAGES WITH ARTIFICIAL INTELLIGENCE MODELSen_US
dc.typeBooken_US
dc.source.journaltitlePROCEEDINGS OF AZERBAIJAN HIGH TECHNICAL EDUCATIONAL INSTITUTIONSen_US
dc.source.booktitleVOLUME 26 SPECIAL ISSUEen_US
dc.source.volume2en_US
dc.source.issue148en_US
dc.source.beginpage421en_US
dc.source.endpage431en_US
dc.source.numberofpages11en_US
Appears in Collections:Modern Problems of Macromolecular Compound Technology 2024

Files in This Item:
File Description SizeFormat 
Modern Problems of Macromolecular Compound Technology 2024-421-431.pdf1.04 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.