Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAghalarov, Mirakram-
dc.date.accessioned2026-01-02T20:13:35Z-
dc.date.available2026-01-02T20:13:35Z-
dc.date.issued2025-10-11-
dc.identifier.issn2616-6127 2617-4383-
dc.identifier.urihttp://dspace.azjhpc.org/xmlui/handle/123456789/508-
dc.description.abstractTime series image processing, a subfield of computer vision, enhances the accuracy of applications by leveraging temporal context. While this advantage is commonly utilized in video-based tasks, satellite imagery can also be treated as time series data when geospatial coordinates and timestamps are considered. Semantic segmentation, a key task in remote sensing, can benefit significantly from this temporal information. However, acquiring high-quality labeled datasets for such tasks remains a major challenge. In this study, we propose a novel temporal-aware domain adaptation framework for semantic segmentation, specifically targeting the detection of oil spills in the Caspian Sea. Our approach integrates time series information to improve cross-domain generalization. We evaluate our method on the synthetic SynthOil dataset, and a custom-labeled real-world dataset provided by Azercosmos and ArcGIS. Furthermore, we enhance the backbone of the Segformer model using a super-resolution dataset curated from Azercosmos and open data from the Esri ArcGIS platform. Experimental results demonstrate the effectiveness of our approach in improving segmentation performance across domains.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectSemantic Segmentationen_US
dc.subjectSpatio-temporal Processingen_US
dc.subjectTem- poral Dimensionen_US
dc.subjectSatellite Imageryen_US
dc.subjectDeep Learningen_US
dc.subjectComputer Visionen_US
dc.titleUTILIZATION OF TEMPORAL DIMENSION IN SATELLITE IMAGERY: BETTER SEMANTIC SEGMENTATION WITH LOW DATA RESOURCESen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volumeVolume 7en_US
dc.source.issuee2025.02en_US
dc.source.beginpage1en_US
dc.source.endpage12en_US
dc.source.numberofpages12en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2025.02.pdf335.92 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.