Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/64
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Vladislav-
dc.contributor.authorAmponis, Georgios-
dc.contributor.authorNebel, Jean-Christophe-
dc.contributor.authorArgyriou, Vasileios-
dc.contributor.authorLagkas, Thomas-
dc.contributor.authorSarigiannidis, Panagiotis-
dc.date.accessioned2023-04-28T22:25:13Z-
dc.date.available2023-04-28T22:25:13Z-
dc.date.issued2021-06-
dc.identifier.issn2616-6127-
dc.identifier.issn2617-4383-
dc.identifier.otherhttps://doi.org/10.32010/26166127.2021.4.1.15.28-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/64-
dc.description.abstractDevelopments in the field of neural networks, deep learning, and increases in computing systems’ capacity have allowed for a significant performance boost in scene semantic information extraction algorithms and their respective mechanisms. The work presented in this paper investigates the performance of various object classification- recognition frameworks and proposes a novel framework, which incorporates Super-Resolution as a preprocessing method, along with YOLO/Retina as the deep neural network component. The resulting scene analysis framework was fine-tuned and benchmarked using the COCO dataset, with the results being encouraging. The presented framework can potentially be utilized, not only in still image recognition scenarios but also in video processing.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectObject Recognitionen_US
dc.subjectScene Analysisen_US
dc.subjectSuper Resolutionen_US
dc.subjectMachine Learningen_US
dc.subjectHigh-Performance Computingen_US
dc.subjectFeature Extractionen_US
dc.titleOBJECT RECOGNITION FOR AUGMENTED REALITY APPLICATIONSen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume4en_US
dc.source.issue1en_US
dc.source.beginpage15en_US
dc.source.endpage28en_US
dc.source.numberofpages14en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org_10.32010_26166127.2021.4.1.15.28.pdf1.3 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.