Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/82
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtashfaraz, Navid-
dc.contributor.authorGholamrezaie, Faezeh-
dc.contributor.authorHosseini, Arash-
dc.contributor.authorIsmayilova, Nigar-
dc.date.accessioned2023-04-30T22:24:32Z-
dc.date.available2023-04-30T22:24:32Z-
dc.date.issued2022-06-
dc.identifier.issn2616-6127-
dc.identifier.issn2617-4383-
dc.identifier.otherhttps://doi.org/10.32010/26166127.2022.5.1.57.71-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/82-
dc.description.abstractRenewable energy is one of the most critical issues of continuously increasing electricity consumption which is becoming a desirable alternative to traditional methods of electricity generation such as coal or fossil fuels. This study aimed to develop, evaluate, and compare the performance of Linear multiple regression (MLR), support vector regression (SVR), Bagging and random forest (R.F.), and decision tree (CART) models in predicting wind speed in Southeastern Iran. The data used in this research is related to the statistics of 10 minutes of wind speed in 10-meter, 30-meter, and 40-meter wind turbines, the standard deviation of wind speed, air temperature, humidity, and amount of the Sun's radiation. The bagging and random forest model with an RMSE error of 0.0086 perform better than others in this dataset, while the MLR model with an RMSE error of 0.0407 has the worst.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectMachine Learningen_US
dc.subjectMLRen_US
dc.subjectSVRen_US
dc.subjectR.F.en_US
dc.subjectCARTen_US
dc.subjectWind Speed Forecastingen_US
dc.titleA COMPARATIVE ASSESSMENT OF MACHINE LEARNING MODELS FOR PREDICTING WIND SPEEDen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume5en_US
dc.source.issue1en_US
dc.source.beginpage57en_US
dc.source.endpage71en_US
dc.source.numberofpages15en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2022.5.1.57.71.pdf1.73 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.