Please use this identifier to cite or link to this item: http://dspace.azjhpc.org/xmlui/handle/123456789/90
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtashfaraz, Navid-
dc.contributor.authorManthouri, Mohammad-
dc.date.accessioned2023-04-30T23:34:23Z-
dc.date.available2023-04-30T23:34:23Z-
dc.date.issued2022-12-
dc.identifier.issn2616-6127-
dc.identifier.issn2617-4383-
dc.identifier.otherhttps://doi.org/10.32010/26166127.2022.5.2.254.272-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/90-
dc.description.abstractWind speed and power at wind power stations affect the efficiency of a wind farm, so accurate wind forecasting, a nonlinear signal with high fluctuations, increases security and better efficiency than wind power. We are looking for wind speed for a wind farm in Iran. In this research, a combined neural network created from variational autoencoder (VAE), long-term, short-term memory (LSTM), and multilayer perceptron (MLP) for dimension Reduction and encoding is proposed for predicting short-term wind speeds. The data used in this research is related to the statistics of 10 minutes of wind speed in 10- meter, 30-meter, and 40-meter wind turbines, the standard deviation of wind speed, air temperature, and humidity. To compare the proposed model (V- LSTM-MLP), we implemented three deep neural network models, including Stacked Auto-Encoder (SAE), recurrent neural networks (Regular LSTM), and hybrid model Encoder-Decoder recurrent network (LSTM-Encoder-MLP) presented on this dataset. According to the RMSE statistical index, the proposed model is worth 0.1127 for a short time and performs better than other types on this dataset.en_US
dc.language.isoenen_US
dc.publisherAzerbaijan Journal of High Performance Computingen_US
dc.subjectLSTMen_US
dc.subjectVAEen_US
dc.subjectMLPen_US
dc.subjectWind Speed Predictionen_US
dc.subjectDimension Reductionen_US
dc.subjectEncoder-Decoderen_US
dc.titleSHORT-TERM WIND SPEED FORECASTING USING DEEP VARIATIONAL LSTMen_US
dc.typeArticleen_US
dc.source.journaltitleAzerbaijan Journal of High Performance Computingen_US
dc.source.volume5en_US
dc.source.issue2en_US
dc.source.beginpage254en_US
dc.source.endpage272en_US
dc.source.numberofpages19en_US
Appears in Collections:Azerbaijan Journal of High Performance Computing

Files in This Item:
File Description SizeFormat 
doi.org.10.32010.26166127.2022.5.2.254.272.pdf2.22 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.